Prof. Emily Mower Provost
Emily Mower Provost is a Professor and Senior Associate Chair in Computer Science and Engineering and Professor of Psychiatry (by courtesy) at the University of Michigan. She received her Ph.D. in Electrical Engineering from the University of Southern California (USC), Los Angeles, CA in 2010. She has been awarded a Toyota Faculty Scholar Award (2020), National Science Foundation CAREER Award (2017), the Oscar Stern Award for Depression Research (2015), a National Science Foundation Graduate Research Fellowship (2004-2007). She is a co-author of multiple award-winning papers in the field of automatic emotion recognition. Her research interests are in human-centered speech and video processing, multimodal interfaces design, and speech-based assistive technology. The goals of her research are motivated by the complexities of the perception and expression of human behavior.
Research Overview
Emotion has intrigued researchers for generations. This fascination has permeated the engineering community, motivating the development of affective computational models for classification. However, human emotion remains notoriously difficult to interpret both because of the mismatch between the emotional cue generation (the speaker) and cue perception (the observer) processes and because of the presence of complex emotions, emotions that contain shades of multiple affective classes. Proper representations of emotion would ameliorate this problem by introducing multidimensional characterizations of the data that permit the quantification and description of the varied affective components of each utterance. Currently, the mathematical representation of emotion is an area that is underexplored. Research in emotion expression and perception provides a complex and human-centered platform for the integration of machine learning techniques and multimodal signal processing towards the design of interpretable data representations.
Behavioral modeling has important application in the field of assistive technology. In this sphere, it becomes critical to understand how a clinician will perceive the behavior of a patient. Our work focuses on methods to recognize mood for individuals with bipolar disorder and methods to estimate speech intelligibility for people with aphasia.
Recorded Talks
Michigan AI Symposium, Jan. 2019 — A quick talk on our speech-based mission
MIND Summer School, Aug. 2018 — Talk on speech-based assistive technology
Data Mining Workshop, 2013 — Talk on engineering approaches to understanding emotion perception.
Keynote at the 7th Annual Prechter Lecture — Talk on human behavior understanding