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Abstract
Huntington Disease (HD) is a progressive disorder which

often manifests in motor impairment. Motor severity (captured
via motor score) is a key component in assessing overall HD
severity. However, motor score evaluation involves in-clinic
visits with a trained medical professional, which are expensive
and not always accessible. Speech analysis provides an attrac-
tive avenue for tracking HD severity because speech is easy to
collect remotely and provides insight into motor changes. HD
speech is typically characterized as having irregular articula-
tion. With this in mind, acoustic features that can capture vo-
cal tract movement and articulatory coordination are particu-
larly promising for characterizing motor symptom progression
in HD. In this paper, we present an experiment that uses Vocal
Tract Coordination (VTC) features extracted from read speech
to estimate a motor score. When using an elastic-net regression
model, we find that VTC features significantly outperform other
acoustic features across varied-length audio segments, which
highlights the effectiveness of these features for both short- and
long-form reading tasks. Lastly, we analyze the F-value scores
of VTC features to visualize which channels are most related to
motor score. This work enables future research efforts to con-
sider VTC features for acoustic analyses which target HD motor
symptomatology tracking.
Index Terms: Huntington disease, motor impairment, vocal
tract coordination, articulatory coordination, acoustic features,
motor symptom tracking

1. Introduction
Huntington Disease (HD) is a genetic, neurodegenerative dis-
ease that affects approximately 1 out of 10,000 individuals.
Those afflicted with HD develop motor, cognitive, and psychi-
atric problems which worsen over time. Although there is no
known cure for HD, having the ability to track symptomatol-
ogy is imperative in medical efforts for developing effective
treatments. Quantitative speech analysis provides a promis-
ing avenue for assisting medical professionals in characterizing
symptom progression, since motor speech deficits are one of the
most common symptoms observed in HD patients, occurring in
roughly 90% of cases [1, 2, 3, 4, 5, 6].

Manifest HD can cause a variety of motor-related symp-
toms in speech resulting in reduced speech rate, abnormal
speech rhythm, increased pauses, shorter vowel durations,
higher intervocalization duration, and reduced articulation [2, 3,
4, 5]. These effects can also be compounded by co-morbidities,
such as dysarthria (slurred speech) and/or bradykinesia (slow

movement), which can impact speech production depending on
the elicitation task. In premanifest HD, speech trends such
as increased articulation rate, imprecise pace performance, and
higher variability in syllable repetition are observed [7]. These
clinical findings in manifest and premanifest HD suggest that
speech can be a useful signal for disease progression tracking.
With this in mind, future applications should focus on automatic
HD analyses that are robust and can handle a wide range of
speech motor irregularities over HD severity.

Prior works have focused on differentiating between
healthy control speakers and those with premanifest and man-
ifest HD [8, 9, 10]. However, as we consider applications that
can help medical professionals monitor symptom progression, it
is important to consider severity on a continuous scale, such as
predicting a motor score. There are several continuous scores
useful for severity tracking; however, in this work we specifi-
cally focus on Total Motor Score (TMS) because it represents a
critical component of the standard assessment used by medical
professionals to evaluate HD severity [11].

Clinical literature suggests that acoustic features which cap-
ture irregular articulatory movement in speech are ideal for
HD motor tracking [2]. Vocal Tract Coordination (VTC) fea-
tures are strong candidates for this task by quantifying articu-
latory coordination using correlations across low-level acous-
tic features. Although previous research has used these fea-
tures to capture psychomotor articulatory coordination in de-
pression [12, 13], these features have not been explored at
capturing the broad range of motor symptoms present in HD
speech.

In this work, we investigate and analyze the effective-
ness of VTC features for HD symptom progression track-
ing. We experiment with two extraction heuristics for VTC,
eigendecomposition- (EVTC) and full-VTC (FVTC), in order
to study the effect of dimensionality reduction on these features
when characterizing motor symptomatology. We ultimately
show that FVTC features achieve performance improvements
over OpenSMILE, raw acoustic features, and EVTC when used
for predicting TMS on read speech (i.e., the Grandfather Pas-
sage). We also investigate how the length of the audio sample
is related to downstream performance and analyze which FVTC
feature channels are most relevant to motor score tracking.

2. Related Work
Prior work by Riad et. al. have shown that phonatory fea-
tures are useful for classifying between control, premanifest,
and manifest HD when using acoustic data from a max phona-
tion task [10]. These phonatory features include jitter/shimmer,



probability of voicing, and statistics over mel-cepstral features.
The authors also show that these phonatory features achieve an
R2 of 0.53 when predicting TMS. However, questions still re-
main as to whether these phonatory features can be extended
to tasks that involve complex speech production (i.e., passage
readings or spontaneous speech), which is the ideal for remote
health monitoring applications. In our work, we extract similar
phonatory and rhythm features using the OpenSMILE toolkit.

Previous work by Perez et. al. looked at capturing pauses,
speech rate, and pronunciation from generated transcripts to
automatically differentiate between healthy controls and gene
positive HD participants who read the Grandfather Passage [8].
Their results show that neural networks could classify HD with
up to 87% accuracy and that the effectiveness of pauses, speech
rate, and pronunciation were correlated with disease severity.
However, a limitation of this approach is that the extracted
features are directly tied to the performance of ASR systems,
which typically underperform in unrestricted, disordered speech
settings [14, 15, 16]. In our current work, we remove this de-
pendence on ASR systems for feature extraction by extracting
acoustic features directly from audio.

Recent work by Romana et. al. looked at using vowel dis-
tortion to classify manifest vs. premanifest HD [9]. The authors
used manually extracted vowel segments from the Grandfather
Passage. The authors demonstrate that these features are not
only correlated to TMS but achieve 80% classification accuracy
of premanifest vs. manifest HD using trained models. Clas-
sification was performed at the speaker-level so features were
computed over the reading passage. In contrast, rather than re-
stricting to manually extracted vowels, the current work investi-
gates acoustic features that can be extracted automatically over
the entire passage.

3. Data
The dataset we use was collected at the University of Michi-
gan [17]. The dataset consists of 62 English-speaking partic-
ipants (31 healthy, 31 with HD). Healthy control participants
had no history of either neurological disorders or speech im-
pairments. Individuals with HD had to have a positive gene test
and/or clinical HD diagnosis by a physician.

The motor severity of each participant was assessed using
the TMS, the motor subsection of the Unified Huntington Dis-
ease Rating Scale (UHDRS) [11], a standard assessment used
by medical professionals to evaluate HD severity. The TMS is a
holistic motor evaluation, which sums together individual mo-
tor subsections that target eye, trunk, gait, tongue, and speech
movement. The TMS ranges from 0 (healthy motor functional-
ity) to 128 (severe motor impairment). In our dataset, our HD
speakers have an average TMS of 33.6 (± 23.6), while our Con-
trol speakers have an average TMS of 4.4 (± 2.7).

HD participants were designated with premanifest HD if
they had a diagnostic confidence rating of <4 on the last item
of the TMS, while manifest HD was defined by a confidence
rating of 4 on the last item of the TMS [18]. Within the manifest
group, we label participants as early- or late-stage based on their
Total Functional Capacity (TFC) scores, which range from 0
(low functioning) to 13 (high functioning) [19]. Manifest early-
stage was defined by a TFC score of 7-13, while manifest late-
stage was defined by a TFC score of 0-6 [20]. The speaker
breakdown according to HD severity is: 12 premanifest HD, 12
manifest early-stage, and 7 manifest late-stage.

The data include both interviews and a series of tasks [17].
All tasks were recorded using a table microphone at 44.1 kHz.

This study focuses on the reading portion, where participants
read the Grandfather Passage [21]. This reading task contains
129 words and 169 syllables and is commonly used to test for
dysarthria in speech-language pathology.

4. Features
4.1. Vocal Tract Coordination Features

Although previous works have shown success at using VTC-
derived features to capture psychomotor articulatory differences
when characterizing depression [13, 22], little work has been
done on extending similar correlation-based features towards
other domains. Clinical research has not only characterized HD
speech as having irregular articulation but has even suggested
that motor performance of the vocal tract and trunk extremities
is controlled by the same mechanisms, presumably the basal
ganglia [2, 6]. This highlights the vocal tract as a key area of
study for motor symptom tracking in HD and motivates the in-
vestigation of VTC features for characterizing the wide- range
of articulatory symptoms in HD.

VTC features are derived from acoustic signals. In our work
we use librosa to extract 16-channel mel-frequency cepstral co-
efficients (mfcc), delta mel-frequency cepstral coefficients (dm-
fcc) using a hamming window of 25 ms with a 10 ms step size.
We remove the 0th coefficient and apply speaker-level cepstral
mean and variance normalization.

We calculate VTC features by applying auto- and cross-
correlation functions to time-delayed channels (i.e., feature di-
mension) of a given acoustic signal, following the same ap-
proach as outlined in [13]. For a given utterance, a normalized
correlation rdi,j is computed over the acoustic signal x following
equation 1, where i and j are channels and d is the time-delay
used to shift a given channel.

rdi,j =

∑T−d
t=1 xi[t]xj [t+ d]√

r0i,ir
0
j,j

(1)

We experiment with two feature formats for VTC. The first
uses the full feature vector, which we call Full-VTC (FVTC).
For FVTC, we concatenate all rdi,j , which results in a N×N×D
feature vector, where N is the number of channels (15) across
the entire utterance and a max delay of D (80). The second for-
mat applies eigendecomposition across the channels of FVTC,
which we call eigen-VTC (EVTC). EVTC was originally used
in previous works [22, 12] and results in a N×D feature vector.
Our feature extraction code will be made publicly available 1.

4.2. Baseline Features

Prior research has shown promise in using IS10 features from
the OpenSMILE toolkit for emotion recognition, cognitive de-
cline assessment, and characterizing disordered speech [23, 24,
25]. We extract IS10 features which include low-level mfcc
with appended deltas, shimmer, jitter, log-mel frequency band,
and fundamental frequency features. Another benefit of IS10
is that it also contains some features which were used in [10].
For each utterance, we compute broad statistics (mean, std, min,
max, and median) over the frame-level feature matrix leading to
a 352-dim feature vector.

For our second set of baseline features (raw acoustic fea-
tures), we extract and use low-level acoustic features (mfcc and
dmfcc) and compute broad statistics over the utterance in order

1https://github.com/matthewkperez/VTC-features



Features RMSE R2 CCC CCC-pre CCC-early CCC-late
Transcript Feats 18.0 (4.4) 0.32 (0.29) 0.52 (0.19) 0.28 0.22 0.09
OpenSMILE IS10 20.3 (3.7) 0.16 (0.34) 0.39 (0.21) 0.25 0.2 0.06

Raw acoustic features

mfcc 20.5 (4.0) 0.16 (0.29) 0.39 (0.19) 0.08 0.12 0.07
dmfcc 19.9 (3.9) 0.21 (0.29) 0.43 (0.17) 0.21 0.04 0.17

EVTC

mfcc 20.5 (4.1) 0.17 (0.26) 0.38 (0.18) 0.18 0.09 0.19
dmfcc 20.5 (4.0) 0.13 (0.4) 0.38 (0.21) 0.24 0.21 0.24

FVTC

mfcc 22.1 (3.1) 0.04 (0.29) 0.29 (0.19) 0.2 -0.2 0.12
dmfcc 17.9 (3.5) † 0.32 (0.36) 0.51 (0.2)† 0.26 0.26 0.35

Table 1: Elastic-net regression task when predicting Total Motor Score at the speaker-level using 10s segments. Results are aver-
aged over 100 runs (± std). † indicates that the marked performance is significantly higher than best baseline feature (raw-dmfcc).
Significance is assessed at p < 0.05 using the Tukey’s honest test on the ANOVA statistics.
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Figure 1: Elastic-net model using FVTC-dmfcc features, where
the top-75 features. 10s audio segments were used and the
model was run a 100 times.

to generate a fixed feature vector. We compute mean, std, min,
max, and median following that of previous works [23, 26].

5. Experiment
For all experiments, we initially segment the audio data into
smaller chunks using a sliding window of 10s in order to in-
crease the number of training samples in our dataset (Sec-
tion 5.1) and then explore potential performance changes as a
function of segment length (Section 5.2). We assign the same
TMS score to all segments from a given speaker. We evaluate
performance using a randomly selected 20% held-out, speaker-
independent test set. To account for randomness in test set se-
lection, model initialization, and training, we run each experi-
ment 100 times and present metric averages (±1 std) over all
runs. We downsample the control population to a randomly
selected seven speakers due to the large TMS imbalance (i.e.
majority of speakers are control or premanifest). This selec-
tion was motivated by the number of late-stage HD speakers
(seven) and serves to ultimately circumvent biasing the classi-
fier towards low TMS scores.

We perform feature normalization and select the top 75-
features (the upper bound for our raw acoustic feature set) based
on F-value scores using the training set. Selected features are
then used to train an elastic-net model, where L1 and L2 regu-
larization is combined using default hyperparameters, (C=1 and
ratio=0.5) [27]. Elastic-net is utilized for our TMS regression
task due to its ability to handle multicollinearity and perform
variable selection and regularization simultaneously [10, 26].

5.1. TMS Score Prediction

We use the elastic-net model to predict TMS for each segment
and perform speaker-level averaging over all segments for the
final TMS prediction. We evaluate system performance using
root-mean-square error (RMSE), R2, and concordance correla-
tion coefficient (CCC) between the predicted and target scores.
In addition, we compute the CCC for each HD severity (pre-
manifest, early, and late) over all runs. With this, we can better
understand what types of speakers the model is able to fit with
regards to HD severity. To assess the statistical significance we
perform a Tukey honest significance test using p < 0.05.

Our goal is to identify how well VTC features (FVTC and
EVTC) characterize TMS in comparison to other baseline fea-
ture sets. Our results presented in Table 1 shows that FVTC-
dmfcc outperforms all baseline methods across all evaluation
metrics when estimating TMS. We note significant improve-
ments in RMSE and CCC, achieving average values of 17.9 and
0.51 respectively. We also note that when comparing EVTC and
FVTC, eigendecomposition seems to benefit mfcc; however, for
dmfcc using FVTC features provides better performance. Ul-
timately, these results highlight FVTC-dmfcc as a promising
acoustic biomarker for modeling motor symptomatology.

Figure 1 illustrates the performance of FVTC-dmfcc for all
speakers by showing the ground truth (green), speaker predic-
tion (grey), and mean prediction (orange) TMS. One point of
emphasis is the model’s performance for higher TMS, where
we can see a stronger correlation (CCC = 0.35) for late-stage
speakers, compared to premanifest- and early-stage speakers
(Table 1). One outlier to note is speaker 73828, which the model
incorrectly estimates as having low TMS. Although further in-
vestigation is required, initial analyses show that this speaker is
an outlier across all feature sets, which seems to suggest that
this speaker’s motor issues may not manifest in speech.
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Figure 2: RMSE, R2, and CCC using varying segment lengths to splice the Grandfather Passage. TMS estimation is performed at the
segment-level.
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Figure 3: F-value scores for FVTC-dmfcc using 10s segments
averaged over all 100 runs and channel maximum taken over
all delays.

5.2. Segment Size Variation

Our next experiment analyzes how the segment-level perfor-
mance of our system changes as the length of the segments is
varied. In the previous analysis, we restricted segments to 10s
due to the relatively small dataset size. However, in this sec-
tion, we analyze potential performance increases resulting from
longer segment lengths to inform future studies. We segment
the grandfather passage into 7, 10, 15, 20, 25, and 30 second
segments and perform TMS estimation at the segment-level.

Figure 2 shows the performance of RMSE, R2, and CCC
for our different feature sets when varying audio segment size.
We can see performance improvement in RMSE, R2, and CCC
when using FVTC-dmfcc across all segment sizes. OpenS-
MILE, raw feats, and FVTC all show improvements when using
longer audio segments. We hypothesize that for OpenSMILE
and raw feats this is likely due to taking broad statistics over
longer audio sequences. In the case of FVTC, we demonstrate
that longer audio intervals allow for more robust and general-
izable correlation computation, which is a finding that is also
consistent with previous work [13].

These results motivate the need for longer form passage
readings since nearly all acoustic features seem to benefit from
longer audio. However, in the case of both short- and long-form
audio readings, FVTC-dmfcc should be an acoustic feature con-
sidered for characterizing TMS.

5.3. FVTC Channel Analysis

Our last experiment analyzes the FVTC-dmfcc feature space us-
ing the scores derived from F-value between feature and TMS.

Figure 3 shows a heatmap where the x- and y-axis represent the
i and j channels used for the FVTC-dmfcc features. Feature
scores are averaged over all 100 iterations and the maximum
score is taken for each channel across all delays. Channels 0-6
seem to represent a dense amount of relevant information for
TMS regression, accounting for 66% of the final selected fea-
tures, which suggests that correlations across channels in the
low frequency space are related to TMS.

6. Conclusion
In this work we present a novel investigation into the effec-
tiveness of Vocal Tract Coordination (VTC) features for char-
acterizing motor symptomatology in HD speech. We show
that FVTC-dmfcc significantly outperforms all other acoustic
features in predicting TMS with regards to RMSE and CCC
by achieving average values of 17.9, 0.32, and 0.51 respec-
tively. Furthermore, we demonstrate that FVTC-dmfcc out-
performs other acoustic features when classifying varied length
segments, which suggests these features should be considered
when analyzing both short- and long-form reading tasks. We
also show that FVTC-dmfcc performance improves as audio
length increases, which motivates data collection methods to
push for long form audio readings. Lastly, we analyze chan-
nel importance by plotting F-value scores and demonstrate that
low-frequency channels are most relevant to TMS.

Future work, will encompass further analysis into VTC fea-
tures and their ability to characterize disordered speech. We
plan to investigate other disorders, such as Parkinson’s Disease.
Additionally, as we start to consider passive, remote health
monitoring applications we would like to relax the dependence
on read speech tasks and utilize free speech as audio input.

7. Acknowledgements
The authors would like to thank Thomas Quatieri, James
Williamson, and Zhaocheng Huang for their helpful discus-
sions. This material is based in part upon work supported by
the National Science Foundation Graduate Research Fellowship
Program (NSF-GRFP), as well as by the National Institutes of
Health (NIH), National Center for Advancing Translational Sci-
ences (UL1TR000433), National Institute of Neurological Dis-
orders and Stroke (R01BS077946) and/or Enroll-HD (funded
by the CHDI Foundation). Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
funding sources listed above.



8. References
[1] A. B. Young, I. Shoulson, J. B. Penney, S. Starosta-Rubinstein,

F. Gomez, H. Travers, M. A. Ramos-Arroyo, S. R. Snodgrass,
E. Bonilla, H. Moreno et al., “Huntington’s disease in venezuela:
neurologic features and functional decline,” Neurology, vol. 36,
no. 2, pp. 244–244, 1986.

[2] S. Skodda, U. Schlegel, R. Hoffmann, and C. Saft, “Impaired mo-
tor speech performance in huntington’s disease,” Journal of Neu-
ral Transmission, vol. 121, no. 4, pp. 399–407, 2014.
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