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Abstract—Automatic recognition of emotion is becoming an
increasingly important component in the design process for
affect-sensitive human–machine interaction (HMI) systems.
Well-designed emotion recognition systems have the potential to
augment HMI systems by providing additional user state details
and by informing the design of emotionally relevant and emotion-
ally targeted synthetic behavior. This paper describes an emotion
classification paradigm, based on emotion profiles (EPs). This
paradigm is an approach to interpret the emotional content of
naturalistic human expression by providing multiple probabilistic
class labels, rather than a single hard label. EPs provide an
assessment of the emotion content of an utterance in terms of a
set of simple categorical emotions: anger; happiness; neutrality;
and sadness. This method can accurately capture the general
emotional label (attaining an accuracy of 68.2% in our experiment
on the IEMOCAP data) in addition to identifying underlying
emotional properties of highly emotionally ambiguous utterances.
This capability is beneficial when dealing with naturalistic human
emotional expressions, which are often not well described by a
single semantic label.

Index Terms—Emotion profiles, multimodal emotion classifica-
tion, nonprototypical emotions.

I. INTRODUCTION

T HE proper design of affective agents requires an a
priori understanding of human emotional perception.

Models used for the automatic recognition of emotion can
provide designers with a means to estimate how an affective
interface may be perceived given the feature modulations
present in the stimuli. An understanding of the mapping
between feature modulation and human perception fosters
design improvements for both emotionally relevant and emo-
tionally targeted expressions for use in human–computer and
human–robot interaction. This understanding will further
improve human-centered design, necessary for widespread
adoption of this affective technology [1].
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Human perception of naturalistic expressions of emotion is
difficult to estimate. This difficultly is in part due to the pres-
ence of complex emotions, defined as emotions that contain
shades of multiple affective classes [2]–[5]. For example, in [3],
the authors detail a scenario in which evaluators view a clip of
a woman learning that her father will remain in jail. Human
evaluators tagged these clips with labels including anger, dis-
appointment, sadness, and despair [3]. The lack of emotional
purity in natural expressions of emotion must be considered
when designing systems to anticipate human emotional per-
ception of non-stereotypical speech. Classification systems de-
signed to output one emotion label per input utterance may per-
form poorly if the expressions cannot be well captured by a
single emotional label.

Naturalistic emotions can be described by detailing the pres-
ence/absence of a set of basic emotion labels (e.g., angry, happy,
sad) within the data being evaluated (e.g., a spoken utterance).
This multiple labeling representation can be expressed using
emotion profiles (EPs). EPs provide a quantitative measure for
expressing the degree of the presence or absence of a set of
basic emotions within an expression. They avoid the need for
a hard-labeled assignment by instead providing a method for
describing the shades of emotion present in the data. These pro-
files can be used in turn to determine a most likely assignment
for an utterance, to map out the evolution of the emotional tenor
of an interaction, or to interpret utterances that have multiple af-
fective components.

EPs have been used within the community [6] as a method
for expressing the variability inherent in multi-evaluator expres-
sions. These EPs represented the distribution of reported emo-
tion labels from a set of evaluators for a given utterance. The
authors compared the entropy of their automatic classification
system to that present in human evaluations. In our previous
work [7], EPs were described as a method for representing the
phoneme-level classification output over an utterance. These
profiles described the percentage of phonemes classified as one
of five emotion classes. In the current work, profiles are ex-
tended to represent emotion-specific classifier confidence. Thus,
these new profiles can provide a more natural approximation of
human emotion, approximating blends of emotion, rather than
time-percentage breakdowns of classification or reported eval-
uator perception.

The current study presents an implementation of emotion
classification from vocal and motion-capture cues using EPs
as an intermediary step. The data are modeled at the utter-
ance-level where an utterance is defined as one sentence within
a continuous speaker turn, or, if there is only one sentence in the
turn, the entire speaker turn. The utterance-level classification
system is composed of four binary support vector machine
(SVM) classifiers, one for each of the emotions considered
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(anger, happiness, sadness, and neutrality). EPs are created by
weighting the output of the four SVM classifiers by an estimate
of the confidence of the assignment. The utterance is assigned
to the emotion class with the highest level of confidence,
represented by the EP.

The results are presented across three data types of varying
levels of ambiguity, based on evaluator reports: unambiguous
(“prototypical”, total evaluator agreement), slightly ambiguous
(“non-prototypical majority-vote consensus”), highly am-
biguous (“non-prototypical non-majority-vote consensus”), and
mixed (“full dataset,” both total agreement and majority-vote
consensus). We demonstrate that the use of emotion-specific
feature selection in conjunction with emotional profiling-based
support vector machines results in an overall accuracy of 68.2%
and an average of per-class accuracies (unweighted accuracy)
of 64.5%, which is comparable to a previous audio-visual
study resulting in an unweighted accuracy of 62.4% [8]. The
results are compared to a simplified four-way SVM in which
confidences were not taken into account. In all cases, the overall
accuracy of the presented method outperforms the simplified
system. We also demonstrate that the EP-based system can be
extended to interpret utterances lacking a well-defined ground
truth. The results suggest that EPs can be used to discriminate
between types of highly ambiguous utterances.

This work is novel in that it presents a classification system
based on the creation of EPs and uses this technique to interpret
emotionally ambiguous utterances. It extends the EP description
of [7] to include a measure of the confidence with which an emo-
tional assessment is made. This extension allows the EPs to rep-
resent emotions as complex blends, rather than discrete assign-
ments. Furthermore, this confidence can be used to disambiguate
the emotional content of utterances in expressions that would
not otherwise be classified as a single expression of emotion.

The remainder of the paper will be organized as follows.
Section II will describe the work that motivated the creation
of EPs. Section III will describe the data utilized in this study.
Section IV will describe the features and feature selection
method used in this study. Section V will present an overview
of the developed classification system. Sections VI and VII will
detail the results of the emotional classification task. Finally,
Section VIII will provide concluding remarks and future work.

II. RELATED WORK

Ambiguity in emotion expression and perception is a natural
part of human communication. This ambiguity can be mitigated
through the designation of an utterance as either a prototypical
or non-prototypical emotional episode. These labels can be used
to provide a coarse description of the ambiguity present in an
utterance. These terms are described by Russell in [9]. Proto-
typical emotional episodes occur when all of the following el-
ements are present: there is a consciously accessible affective
feeling (defined as “core affect”); there is an obvious expres-
sion of the correct behavior with respect to an object; attention
is directed toward the object, there is an appraisal of the ob-
ject, and attributions of the object are constructed; the individual
is aware of the affective state; and there is an alignment of the
psychophysiological processes [9]. Non-prototypical emotional
episodes occur when one or more of these elements are missing.
Non-prototypical utterances can be differentiated from proto-
typical utterances by their enhanced emotional ambiguity.

There are many sources of emotional ambiguity. Emotional
ambiguity may result from the blending of emotions, masking of
emotions, a cause-and-effect conflict of expression, the inherent
ambiguity in emotion expression, and an expression of emo-
tions in a sequence. Blended emotion expressions occur when
two or more emotions are expressed concurrently. Masking oc-
curs when one emotion (e.g., happiness) is used to mask another
(e.g., anger). Cause-and-effect may result in a perception of am-
biguity when the expressions have a conflict between the posi-
tive and negative characteristics of the expression (e.g., weeping
for joy). Inherent ambiguity may occur when the difference be-
tween two classes of emotion (e.g., irritation and anger) are not
strongly differentiated. Finally, ambiguity may also occur when
a sequence of emotions is expressed consecutively within the
boundary of one utterance [10]. In all of these cases, the utter-
ance cannot be well described by a single hard label.

The proper representation and classification of emotionally
ambiguous utterances has received attention. At the Interspeech
Conference in 2009, there was an Emotion Challenge [11]
special session to focus on the classification of emotional
ambiguous utterances. Similarly, at the Affective Computing
and Intelligent Interaction (ACII) Conference in 2009, there
was also a special session entitled, “Recognition of Non-Pro-
totypical Emotion from Speech—The Final Frontier?” This
session focused on the need to interpret non-prototypical, or
ambiguous, emotional utterances. Emotional ambiguity has
also been studied with respect to classification performance [2],
[12] and synthesis [13], [14].

EPs can interpret the emotion content of ambiguous utter-
ances. EP-based methods have been used to describe the emo-
tional content of an utterance with respect to evaluator reports
[2], [15], classification output [7], and perception (as a com-
bination of multiple emotions) resulting from one group’s ac-
tions towards another group [16]. EPs can be thought of as a
quantified description of the properties that exist in the emotion
classes considered. In [17], Barrett discusses the inherent dif-
ferences that exist between classes of emotions. Between any
two emotion classes, there may exist properties of those classes
held in common, while the overall patterns of the classes are
distinct. For instance, Barrett suggests that anger has character-
istic feature modulations that are distinct from those of other
classes. Thus, expressions labeled as angry must be sufficiently
similar to each other and sufficiently different from the expres-
sions labeled as other emotions. This overview suggests that in
natural expressions of emotion, although there exists an overlap
between the properties of distinct emotion classes, the under-
lying properties of two classes are differentiable. This further
recommends a soft-labeling EP-based quantification for emo-
tionally non-disjoint utterance classes.

EPs can be used to capture the emotional class properties
expressed via class-specific feature modulations. As shown in
the example of anger presented above, an angry emotion should
contain feature properties that are strongly representative of the
class of anger but may also contain feature properties that are
weakly similar to the class of sadness. However, this similarity
to sadness does not suggest an error in classification but a prop-
erty of natural speech. Consequently, an EP representation ca-
pable of conveying strong evidence for anger (the major emo-
tion) and weak evidence for sadness (the minor emotion) is well
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positioned to interpret the content of natural human emotional
speech, since the minor expressions of emotion may suggest
how an individual will act given a major emotion state and an
event [15].

Engineering models provide an important avenue for de-
veloping a greater understanding of human emotion. These
techniques enable quantitative analysis of current theories, illu-
minating features that are common to specific types of emotion
perception and the patterns that exist across the emotion classes.
Such computational models can inform design of automatic
emotion classification systems from speech and other forms of
emotion-relevant data. Multimodal classification of emotion is
widely used across the community [5], [18][19]. For a survey
of the field, see [1].

The classification technique employed in this paper, SVMs,
has been used previously in emotion classification tasks [2],
[18], [20]. SVM is a discriminative classification approach
that identifies a maximally separating hyperplane between two
classes. This method can be used to effectively separate the
classes present in the data.

The feature selection method utilized in this study is infor-
mation gain, which has also been used widely in the literature
[2], [20]. Information gain is used to estimate the importance of
the features using a classifier independent method. Information
gain does not decorrelate the feature space. However, humans
rely on a set of correlated features to disambiguate emotional
utterances. Thus, our decision to utilize this type of feature se-
lection was motivated by our desire to better understand the fea-
tures that are important to humans in emotion identification. The
purpose of this work is not to demonstrate the efficacy of either
the SVM or information gain approaches but instead to demon-
strate the benefit of considering emotion classification output in
terms of soft-labeling via relative confidences rather than solely
as hard labels.

The data utilized in this study are from the USC IEMOCAP
dataset, collected at the University of Southern California [21]
(discussed in more detail in Section III). The USC IEMOCAP
dataset1 is an emotional audio-visual database with facial
motion-capture information. This database has been used for
studies ranging from interaction modeling [14], [22] to eval-
uator modeling [23]. This dataset has been previously used
for two classification studies. The first study [7] classified
audio utterances using hidden Markov models (HMMs) into
one of five states: anger, happiness, neutrality, sadness, and
frustration. The accuracies ranged from 47.3% for the classifi-
cation of emotionally well-defined, or prototypical, utterances
to 35.1% for the classification of emotionally ambiguous, or
non-prototypical, utterances.

In the presented work, we do not consider the class of frus-
tration. The class of frustration within our dataset overlaps with
both anger and sadness [21]. The goal of the presented work is
to create a multi-emotion representation of affective utterances.
Such a representation seeks to describe the affective content of
an utterance in terms of its similarity to other affective classes.
Consequently, the components of the representation should in-
clude emotion classes without high degrees of mutual overlap
to decrease redundancy. Future work includes classifying frus-
tration using EPs constructed from the classes of anger, happi-

1We are currently releasing Session 1 data: http://sail.usc.edu/iemocap/.

ness, neutrality, and sadness to further verify the efficacy of the
technique.

In [8], the authors performed a profiling-based multimodal
classification experiment on the USC IEMOCAP database.
The authors utilized Mel filterbank coefficients (MFBs), head
motion features, and facial features selected using emotion-in-
dependent principal feature analysis (PFA) [24]. The authors
developed four independent classifiers: an upper-face GMM,
a lower-face eight-state HMM, a vocal four-state HMM, and a
head-motion GMM. Each classifier outputs a profile expressing
the soft-decision at the utterance-level. The output profiles were
fused at the decision level, using a Bayesian framework. The
training and testing were completed using leave-one-speaker-out
cross-validation. The overall unweighted accuracy (an average
of the per-class accuracies) for this system was 62.4%.

III. DATA DESCRIPTION

The dataset utilized in this study is the USC IEMOCAP data-
base [21]. The USC IEMOCAP database is an audio-visual data-
base augmented with motion-capture recording. It contains ap-
proximately 12 hours of data recorded from five male-female
pairs of actors (ten actors total). The goal of the data collection
was to elicit natural emotion expressions within a controlled set-
ting. The benefit of the acted dyadic emotion elicitation strategy
is that it permits the collection of a wide range of varied emotion
expressions. The actors were asked to perform from (memo-
rized) emotionally evocative scripts and to improvise upon given
emotional targets. The emotional freedom provided to the actors
allowed for the collection of a wide range of emotional inter-
pretations. The challenges of and benefits to utilizing actor-so-
licited data are discussed more fully in [25]–[27].

The data were evaluated using two evaluation structures: cat-
egorical evaluation and dimensional evaluation. In both evalua-
tion structures, the evaluators observed the audio-visual clips in
temporal order, thus with context. In the categorical evaluations,
evaluators were asked to rate the categorical emotion present
from the set of angry, happy, neutral, sad, frustrated, excited, dis-
gusted, fearful, surprised, and other. The evaluators could tag an
utterance with as many categorical labels as they deemed appro-
priate. There were a total of six categorical evaluators who eval-
uated overlapping subsets of the database. Each emotion was la-
beled by at least three categorical evaluators. The kappa for the
dataset over all utterances and emotional labels was 0.27. The
kappa over only utterances where the evaluators reached a ma-
jority consensus was 0.40. When the classes of happiness and
excitation were merged (as they were in the work presented in
this paper) and the classes of disgust, fear, and surprised were
merged with other, the overall kappa increased to 0.35 and the
kappa over sentences in which there was majority consensus in-
creased to 0.48. More detail on the evaluation of this dataset can
be found in [21].

In the dimensional evaluations, the evaluators were asked
to rate the valence (positive versus negative), activation (calm
versus excited), and dominance (passive versus aggressive)
properties of the emotion expression. The dimensional evalu-
ation task was completed by a separate set of six evaluators,
again evaluating overlapping subsets of the data. Each emo-
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tional utterance within the database was labelled by at least two
dimensional evaluators [21].

In each evaluation task, the disparate evaluators were com-
bined into a single rating to determine an overall ground truth.
The categorical ground truth was established using majority
voting over all of the reported categorical labels. The dimen-
sional ground truth was established by averaging (without
rounding) over the dimensional evaluators [21].

A. Emotion Expression Types

Emotional data can be considered either as a cohesive
whole or as merged subsets of data. The subsets considered
in this work are prototypical, non-prototypical majority-vote
consensus (“non-prototypical MV”), and non-prototypical
non-majority-vote consensus (“non-prototypical NMV”).
These three emotional gradations are derivations of Russell’s
prototypical and non-prototypical definitions (Section II) and
are used to describe the clarity of the emotion presentations.

The three emotion expression types are defined with respect
to the categorical emotional evaluators. Prototypical emotion
expressions are expressions with clear well-agreed upon emo-
tional content. During the categorical emotion labeling task,
these utterances were assigned a categorical label that is the
intersection of all of the evaluators’ categorical ratings (e.g.,
for three evaluators, all three evaluators tagged the emotion
“angry”). Non-prototypical MV emotions are utterances with
identifiable, but ambiguous, emotional content. During the
categorical evaluation, there was no label at the intersection of
all of the evaluators’ evaluated sets. However, these utterances
were tagged by a majority of the evaluators with a single
emotional label (e.g., two evaluators tagged an emotion as
“angry” and one tagged the emotion as “disgusted”). The final
emotional group, the non-prototypical NMV emotions were
tagged with an inconsistent set of emotional labels (e.g., one
evaluator tagged the emotion as “angry,” another as “disgusted,”
and the final as “sad”). As a result, it is not possible to define a
ground-truth label for this group of emotions. It is difficult to
make a strong assertion regarding the prototypical or non-pro-
totypical nature of an utterance since there are, on average, only
three evaluators per utterance. However, the presented results
suggest that the designations are representative of differing
amounts of variability within the emotion classes.

In the presented work, the utterances considered are tagged
with at least one emotion from the emotional set: angry; happy;
neutral; sad; excited. In all cases, the classes of happy and ex-
cited were merged into a group referred to as “happy” to combat
data sparsity issues. In the prototypical and non-prototypical
MV data, all the utterances had labels from this emotional set.
In the non-prototypical NMV group, only utterances tagged by
at least one evaluator as angry, happy, neutral, sad, or excited
were considered (the classes of happy and excited were again
merged). This group is described as either 1L to indicate that
one of the labels is in the emotional set, 2L to indicate that two
of the labels are in this set, or nL to indicate that there were
more than two labels from the set. The 1L data were extremely
biased toward the class of anger Table I and there were only 80

TABLE I
DISTRIBUTION OF THE CLASSES IN THE EMOTION EXPRESSION TYPES (NOTE:

EACH UTTERANCE IN THE 2L GROUP HAS TWO LABELS, THUS THE SUM

OF THE LABELS IS 840, BUT THE TOTAL NUMBER OF SENTENCES IS 420).
THERE ARE A TOTAL OF 3 000 UTTERANCES IN THE PROTOTYPICAL AND

NON-PROTOTYPICAL MV GROUP, AND 3 702 UTTERANCES IN TOTAL

utterances in the nL group; therefore, this study will focus only
on the 2L emotions. Table I shows the distribution of the data
across the three expression classes.

B. Data Selection

This work utilized a subset of the USC IEMOCAP database.
During the data collection, only one actor at a time was instru-
mented with motion-capture markers. This decision allowed for
an increase in the motion-capture marker coverage on the actors’
faces. Consequently, only half of the utterances in the database
are accompanied by motion-capture recordings.

The dataset size was further diminished by eliminating utter-
ances without a single voiced segment. This eliminated utter-
ances of sighs, breaths, and low whispers.

Finally, the dataset size was reduced by the evaluator reported
affective label. As previously stated, all utterances analyzed in
this paper are tagged with at least one label from the set: angry;
happy/excited; neutral; sad.

IV. AUDIO-VISUAL FEATURE EXTRACTION

The features utilized in this study were chosen for their per-
ceptual relevance. The initial feature set contained audio and
video (motion-capture extracted) features. All features were ex-
tracted at the utterance-level and were normalized for each sub-
ject using z-normalization. The feature set was reduced to create
four emotion-specific feature sets using Information Gain.

A. Audio Features

The audio features include both prosodic and spectral enve-
lope features. The prosodic features include pitch and energy.
These features have been shown to be relevant to emotion
perception [2], [5], [18], [20]. The spectral features include Mel
frequency coefficients (MFBs). MFBs approximate humans’
sensitivity to changes in frequencies. As the frequency of a
signal increases, humans become less able to differentiate
between two distinct frequencies. MFBs capture this property
by binning the signal with triangular bins of increasing width
as the frequency increases. Mel filterbank cepstral coefficients
(MFCCs) are commonly used in both speech and emotion
classification. MFCCs are discrete cosine transformed (DCT)
MFBs. The DCT decorrelates the feature space. Previous
research has demonstrated that MFBs are better discriminative
features than MFCCs across all phoneme classes for emotion
classification [28].
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Fig. 1. Location of the IR markers used in the motion-capture data collection.

Fig. 2. Facial features. (a) Cheek. (b) Mouth. (c) Forehead. (d) Eyebrow.

B. Video Features

The definition of the video features was motivated by Facial
Animation Parameters (FAPs). FAPs express distances ( , , )
between points on the face. The features utilized in this study
are based on the features found in [29], adapted to our facial mo-
tion-capture configuration. These features were extracted using
motion-capture markers (Figs. 1 and 2). The cheek features in-
clude the distance from the top of the cheek to the eyebrow (ap-
proximating the squeeze present in a smile); the distance from
the cheek to the mouth, nose, and chin; cheek relative distance
features; and an average position. The mouth features contain
distances correlated with the mouth opening and closing, the lips
puckering, and features detailing the distance of the lip corner
and top of lip to the nose (correlated with smiles and frowns).
The forehead features include the relative distances between
points on the forehead and the distance from one of the fore-
head points to the region between the eyebrows. The eyebrow
features include distances describing the up-down motion of the
eyebrows, eyebrow squish, and the distance to the center of the
eyebrows. Each distance is expressed in three features defining
the , , and -coordinates in space.

C. Feature Extraction

The utterance-length feature statistics include mean, vari-
ance, range, quantile maximum, quantile minimum, and
quantile range. The quantile features were used instead of the
maximum, minimum, and range because they tend to be less
noisy. The pitch features were extracted only over the voiced
regions of the signal. The video motion-capture derived fea-
tures were occasionally missing values due to camera error or
obstructions. To combat this missing data problem, the features
were extracted only over the recorded data for each utterance.
These audio-visual features have been used in previous emotion
classification problems [12].

The features were normalized over each speaker using z-nor-
malization. The speaker mean and standard deviation were cal-
culated over all of the speaker-specific expressions within the
dataset (thus, over all of the emotions). Both the normalized and
non-normalized features were included in the feature set.

D. Feature Selection

There were a total of 685 features extracted. However, there
were only 3000 prototypical and non-prototypical MV utter-
ances utilized for testing and training. The feature set was re-
duced using information gain on a per emotion class basis (e.g.,
the features for the class of anger differed from those of hap-
piness). Information gain describes the difference between the
entropy of the labels in the dataset (e.g., “happy”) and entropy
of the labels when the behavior of one of the features is known
(e.g., “happy” given that the distance between the mouth corner
and nose is known) [30]. This feature selection method permits
a ranking of the features by the amount of emotion-class-related
randomness that they explain. The top features were selected for
the final emotion-specific feature sets.

The feature selection was implemented in Weka, a Java-based
data mining software package [31]. Information gain has previ-
ously been used to select a relevant feature subset in [32] and
[33]. Information gain does not create an uncorrelated feature
set, which is often preferable for many classification algorithms.
However, humans rely on a redundant and correlated feature set
for recognizing expressions of emotions. Information gain was
chosen to approximate the feature redundancy of human emo-
tion processing.

The features were selected in a speaker-independent fashion.
For example, the information gain for the emotion-specific fea-
tures to be used for speaker 1 were calculated over a database
constructed of speakers 2–10 using tenfold cross-validation.

E. Final Feature Set

The number of features was determined empirically, opti-
mizing for accuracy. The final feature set included the top 85
features (see Table II for the feature types selected) for each
emotion class. The feature sets for anger and sadness are pri-
marily composed of MFBs. The feature sets of happiness and
neutrality are composed primarily of a mixture of cheek and
mouth features. The high representation of audio features in
the angry and sad feature sets and the low representation in the
happy and neutral feature sets reinforce previous findings that
anger and sadness are well captured using audio data while hap-
piness is poorly captured using audio data alone [7], [19].
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Fig. 3. EP-SVM system diagram. An input utterance is classified using a four-way binary classification. This classification results in four output labels representing
membership in the class ���� or lack thereof ����. This membership is weighted by the confidence (distance from the hyperplane). The final emotion label is the
most highly confident assessment.

TABLE II
AVERAGE PERCENTAGE OF EACH FEATURE OVER THE

40 SPEAKER-INDEPENDENT EMOTION-SPECIFIC FEATURE

SETS (10 SPEAKERS * 4 EMOTIONS)

V. CLASSIFICATION OF EMOTION PERCEPTION: EMOTION

PROFILE SUPPORT VECTOR MACHINE (EP-SVM)

The classification system utilized in this experiment consists
of four binary SVMs. The EPs were created using the four bi-
nary outputs and an approximate measure of classifier confi-
dence. The final label of the utterance is the most confident as-
signment in the EP (see Fig. 3 for the system diagram and an
example).

A. Support Vector Machine Classification

SVMs transform input data from the initial dimensionality
onto a higher dimension to find an optimal separating hyper-
plane. SVMs have been used effectively in emotion classifica-
tion [19], [33]–[36]. The SVMs used in this study were im-
plemented using Matlab’s Bioinformatics Toolkit. The kernel
used is a radial basis function (RBF) with a sigma of eight, de-
termined empirically. The hyperplane is found using sequen-
tial minimal optimization with no data points allowed to vio-
late the Karush–Kuhn–Tucker (KKT) conditions (see [37] for a
more detailed explanation of SVM convergence using the KKT
conditions).

There were four emotion-specific SVMs trained using the
emotion-specific (and speaker-independent) feature sets se-
lected using information gain (Section IV.D). Each of the
emotional SVMs was trained discriminatively using a self
versus other training strategy (e.g., angry or not angry). The
output of each of the classifications included a and the
distance from the hyperplane. This training structure is similar
to the one utilized in [38], in which the authors estimated the
emotion state of a set of speakers from a video signal. The

authors transformed the distances from each of the self versus
other SVM classifiers into probability distributions using a
softmax function. In the present work, the distances were not
transformed because pilot studies demonstrated the efficacy of
retaining the distance variations inherent in the outputs of each
of the four emotion-specific SVM models. The models were
trained and tested using leave-one-speaker-out cross-validation
on the emotion-specific feature sets.

B. Creation of Emotional Profiles

The emotional profiles express the confidence of each of the
four emotion-specific binary decisions. Each of the classifiers is
trained using an emotion-specific feature set (e.g., the feature set
for the angry classifier differs from that for the happy classifier).
The outputs of each of these classifiers include a value indicative
of how well the models created by each classifier fit the test data.
This goodness of fit measure can be used to assess which model
fits the data most accurately.

The SVM goodness of fit measure used in this study is the
raw distance from the hyperplane. SVM is a maximum margin
classifier whose decision hyperplane is chosen to maximize the
separability of the two classes. In feature space, data points that
are closer to the margin are more easily confused with the op-
posing class than data points further from the margin. Thus, the
distance from the margin of each emotion-specific classifier pro-
vides a measure of the classifier confidence. The profile compo-
nents are calculated by weighting each emotion-specific clas-
sifier output by the absolute value of the distance from the
hyperplane (the goodness of fit measure). The EPs are repre-
sentative of the confidence of each binary yes-no emotion class
membership assignment.

SVMs were chosen for the EP backbone based on experi-
mental evidence suggesting that this algorithm had the highest
performance when compared to other discriminative tech-
niques. Thus, the main results are presented using the EP-SVM
technique. However, EPs can be created using K-nearest
neighbors (KNNs), linear discriminant analysis (LDA), or any
classifier that returns a goodness of fit measure (including
generative classifiers). Both KNN and LDA have been used in
emotion recognition studies [38]–[40].
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C. Final Decision

An emotional utterance is assigned to an emotion class based
on the representation of the emotions within the EP. The in-
herent benefit of such a classification system is that it can
handle assessments of emotional utterances with ambiguous
emotional content. When the emotional content of an utterance
is unclear, the four binary classifiers may return a value sug-
gesting that the emotion is not a member of any of the mod-
eled emotion classes. Absent an EP-based system, it would
be difficult to assign an emotional label to such an utterance.
However, even in this scenario, it is possible to reach a final
emotion assignment by considering the confidences of each of
the no-votes.

By definition, ambiguous or non-prototypical emotional ut-
terances fit poorly in the categorical emotion classes. This mis-
match may be because the emotional content is from an emo-
tion class not considered. It may also be because the utterance
contains shades of multiple subtly expressed emotion classes.
However, the EP-based classifier is able to recognize these slight
presences by a low-confidence rejection. Consequently, even
given four no-votes, a final emotion assignment can still be
made.

The fully integrated system is referred to as an Emotion Pro-
file Support Vector Machine, or EP-SVM.

VI. RESULTS AND DISCUSSION: THE PROTOTYPICAL,
NON-PROTOTYPICAL MV, AND MIXED DATASETS

The results presented describe the system performance over
utterances labeled as angry, happy (the merged happy—excited
class), neutral, or sad. The results are divided into three cate-
gories: general results, prototypical emotion results, and non-
prototypical MV results.

The general, prototypical, and non-prototypical results are
compared to a baseline classification system and chance. The
baseline is a simplified version of the EP-SVM classifier. In this
baseline, instead of utilizing the EP representation (weighting
the output by the distance from the boundary), the decisions are
made using three steps. If only one classifier returns a value of

, then the emotion label is assigned to this class. If multiple
classifiers return , the utterance is assigned to the selected
class with the higher prior probability. If no classifiers return

, the emotion is assigned to the class with the highest prior
probability (of the four emotion classes).

The baseline represents SVM classification without consid-
ering relative confidences. Emotion is often expressed subtly.
This subtle expression of emotion is often not well recognized
by classifiers trained to produce a binary decision (acceptance
versus rejection). The comparison between the EP-SVM and
the baseline will demonstrate the importance of considering the
confidence of classification results (e.g., a weak rejection by one
of the classifiers may indicate a subtle expression of emotion,
not the absence of the emotion) rather than just the binary re-
sult. The chance classification result assigns all utterances to the
emotion most highly represented within the three (i.e., general,
prototypical, and non-prototypical MV) data subsets.

A. General Results

The first set of classification results is obtained by training
and testing on the full dataset (prototypical and non-prototyp-
ical MV utterances). The overall accuracy for the EP-SVM clas-
sification system is 68.2% (Table III). This outperforms both
chance (40.1%) and the simplified SVM (55.9%). The differ-
ence between the EP-SVM and baseline method is significant at

(difference of proportions test). The unweighted ac-
curacy (an average of the per-class accuracies) is 64.5%. This re-
sult is comparable to the work of Metallinou et al. [8] (described
in Section II) with an unweighted accuracy of 62.4%, demon-
strating an efficacy of the approach for a dataset with varying
levels of emotional ambiguity.

The average profiles for all utterances demonstrate that in
the classes of angry, happy, and sad there is a clear difference
between the representation of the reported and non-reported
emotions within the average profiles (Fig. 4). All four profiles
demonstrate the necessity of considering confidence in addi-
tion to the binary yes-no label in the classification of natural-
istic human data. For example, the angry EP indicates that even
within one standard deviation of the average confidence the
angry classifier returned a label of “not angry” for angry utter-
ances. The use of and comparison between the four emotional
confidences allowed the system to determine that, despite the
lack of a perfect match between the angry training and testing
data, the evidence indicated that the expressed emotion was
angry F-measure .

As mentioned earlier, the EP technique can be performed
using a variety of classification algorithms. The results are pre-
sented using an SVM backbone. Results can also be presented
for an EP-KNN % and an EP-LDA (diagonal co-
variance matrix, 60.3%).

B. Prototypical Classification

The prototypical classification scenario demonstrates the
ability of the classifier to correctly recognize utterances
rated consistently by evaluators. The overall accuracy for
the prototypical EP-SVM classifier was 81.7% (Table III).
This outperformed chance (49.8%) and the simplified SVM
(75.5%). The difference between the EP-SVM and baseline is
significant at (difference of proportions test). The
high-performance of the simplified SVM is due in part to the
prevalence of happiness in the prototypical data (49.8%). This
bias affected the final results because both ties were broken and
null-results were converted to a class assignment using class
priors. The simplified SVM left 391 utterances unclassified (all
classifiers returned ), representing 27.5% of the data.

The average profiles for prototypical utterances (Fig. 5)
demonstrate that there is a difference between the representa-
tion of the reported emotion and non-reported emotions in the
EPs for the classes of angry, happy, and sad. The barely dif-
ferentiated neutral EP clearly demonstrates the causes behind
the poor classification performance of the neutral data. The
performance increase in the angry, happy, and sad classifica-
tions can be visually explained by comparing Figs. 4(a) to 5(a),
4(b) to 5(b), and 4(d) to 5(d). The mean confidence value for
the angry, happy, and sad data were higher when training and
testing on prototypical data.
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Fig. 4. Average emotional profiles for all (both prototypical and non-prototypical) utterances. The error bars represent the standard deviation. (a) Angry. (b)
Happy. (c) Neutral. (d) Sad.

Fig. 5. Average emotional profiles for prototypical utterances. The error bars represent the standard deviation. (a) Angry. (b) Happy. (c) Neutral. (d) Sad.

Fig. 6. Average emotional profiles for non-prototypical utterances. The error bars represent the standard deviation. (a) Angry. (b) Happy. (c) Neutral. (d) Sad.

TABLE III
EP-SVM AND BASELINE CLASSIFICATION RESULTS FOR THREE DATA

DIVISIONS: FULL (A COMBINATION OF PROTOTYPICAL AND NON-PROTOTYPICAL

MV), PROTOTYPICAL, AND NON-PROTOTYPICAL MV. THE BASELINE RESULT

(SIMPLIFIED SVM) IS PRESENTED AS A WEIGHTED ACCURACY

C. Non-Prototypical Majority-Vote (MV) Classification

The classification of non-prototypical MV utterances using
EPs resulted in an overall accuracy of 55.4%. This accuracy
is particularly of note when compared to the simplified SVM
baseline classification whose overall accuracy is 42.2%. This
difference is not significant ( , difference of propor-
tions test). The EP-SVM also outperforms chance (31.4%). The
class-by-class comparison can be seen in Table III. In 62.3%
of the data (983 utterances), none of the binary classifications
in the simplified SVM classifier returned any values of .
This indicates that the four-way binary classification alone is
not sufficient to detect the emotion content of ambiguous emo-
tional utterances. In the EP-SVM classification there is a higher
level of confusion between all classes and the class of neutrality.
This suggests that the emotional content of utterances defined
as “neutral” may not belong to a well-defined emotion class but
may instead be representative of the lack of any clear and emo-
tionally meaningful information.

The average profiles for non-prototypical MV utterances
(Fig. 6) demonstrate that the EP representation strongly dif-
ferentiates between reported and non-reported emotions given
non-prototypical MV data in the classes of anger and happiness.
The non-prototypical EPs also provide additional evidence
for the importance of comparing the confidences in emotional
assessments between multiple self versus other classification
schemes. The simplified baseline demonstrated that in 62.3%
of the data all four binary classifiers returned non-membership
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labels indicating that, in this subset, the feature properties of the
training and testing data differ more markedly here than in the
prototypical training-testing scenario. However, the similarity
between the properties of a specific emotion class in the training
data were closer to those of the same emotion class in the testing
data rather than a different emotion class. This suggests that the
EP-based method is more robust to the differences in within-class
emotional modulation than conventional SVM techniques.

The neutral classification of the non-prototypical MV data was
more accurate than that of either the prototypical or full datasets.
The neutral EP modeled using the non-prototypical MV data
[Fig. 6(c)] was better able to capture the feature properties of the
neutral data than those modeled using either the prototypical or
full data [compare to Figs. 5(c) and 6(c)]. This suggests that it
may be beneficial to create models based on emotionally variable
data (e.g., the non-prototypical MV data) when considering
inherently ambiguous emotion classes, such as neutrality.

D. Emotion Profiles as a Minor Emotion Detector

The previous sections demonstrated that EP-based repre-
sentations can be used in a classification framework. This
section will assess the ability of the EPs to capture both the
majority and minority reported emotions (e.g., for the rating
“angry–angry–sad,” the major emotion is anger and the minor
emotion is sadness). In this assessment, the EP-SVM is trained
and tested on the non-prototypical MV data.

The ability of the profile to correctly represent the major and
minor emotions is studied in two ways. First, using utterances
whose major emotion was correctly identified by the EP-SVM
and whose minor emotion is from the set of angry, happy, neu-
tral, and sad and, second, using utterances whose major and
minor emotions were the two most confident assessments (in ei-
ther order). There are a total of 748 utterances with minor emo-
tions in the targeted set. Utterances with minor labels outside of
this set were not considered as the EPs only include represen-
tations of anger, happiness, neutrality, and sadness confidences
and cannot directly represent emotions outside of this set.

The major–minor emotion trends can be seen in Table IV(a).
The proportion of the non-prototypical MV emotions with sec-
ondary emotions from the considered set differs with respect to
the majority label. For example, 81.04% of the original happy
data is included in the new set while only 6.01% of the angry
data has secondary labels in the set. The most common sec-
ondary label for the angry data is frustration (74.05%), an emo-
tion not considered in this study due to a large degree of overlap
between the classes. The distribution of the secondary emotions
suggests that the most common combination in the considered
affective set is a majority label of happy and a minority label of
neutral [Table IV(a)]. This combination represents 51.06% of
the major–minor emotion combinations in the considered set.
It should also be noted that across all major emotions the most
common co-occurrence emotion was neutrality.

In an ideal case, the EP-SVM would be able to represent both
the majority and the minority emotions correctly, with the ma-
jority emotion as the most confident assessment and the mi-
nority emotion as the second most confident assessment. There

TABLE IV
MAJOR–MINOR EMOTION ANALYSIS (a) TOTAL NUMBER OF EMOTIONS

WITH SECONDARY LABELS IN THE ANGRY, HAPPY, NEUTRAL, SAD SET,
(b) RESULTS WHERE THE MAJOR AND MINOR EMOTIONS ARE CORRECTLY

IDENTIFIED, (c) RESULTS WHERE THE MAJOR AND MINOR EMOTIONS

WERE BOTH IN THE TOP TWO REPORTED LABELS

are a total of 211 profiles (28.2% of the data) that correctly iden-
tify the major and the minor emotions. Over the non-prototyp-
ical MV data, there were 406 utterances with a correctly identi-
fied major label. Thus, the 211 profiles represent 52.0% of the
correctly labeled data. This indicates that the majority of profiles
that correctly identified the major emotion also correctly iden-
tified the minor emotion. This suggests that EPs can accurately
assess emotionally clear and emotionally subtle aspects of af-
fective communication. The major-minor pairing results can be
found in Table IV(b).

In emotion classification a commonly observed error is the
swapping of the major and minor emotions (i.e., the major emo-
tion is reported as the minor and vice versa). This phenom-
enon was also studied. Table IV(b) presents the emotions whose
major and minor emotions were recognized in the two most con-
fidently returned emotion labels (in either order). The results
demonstrate that, of the utterances with minor emotions in the
target affective set, the EPs identified both the major and minor
emotions in the top two components 40.1% of the time. This
percentage varied across the major labels. The angry non-pro-
totypical MV data had both components recognized in 47.4%
generated EPs, while they were both represented in 42.0% of
the happy EPs, 32% of the neutral EPs, and 45% of the sad EPs.

These results suggest that the EP-SVM technique is capable
of representing subtle emotional information. It is likely that
this method does not return a higher level of accuracy because
the expression of the major emotion was already subtle. There-
fore, the expression of the minor emotion was not only subtle
but not observed by all evaluators. Therefore, this minority as-
sessment may have been due to a characteristic of the data or
the attention level of the evaluator. In this light, the ability of
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the EP-SVM method to capture these extremely subtle, and at
times potentially tenuous, bits of emotional information should
further recommend the method for the quantification of emo-
tional information.

VII. RESULTS AND DISCUSSION: THE NON-PROTOTYPICAL

NMV DATASET

One of the hallmarks of the EP-SVM method is its ability to
interpret ambiguous utterances. EPs can be used to detect subtle
emotional information given inherently ambiguous data. In this
paper, the goal is to utilize utterances that have at least one label
from the target emotional set and to identify at least one of the
emotions reported by the evaluators.

The non-prototypical NMV utterances have no majority-voted
label. These utterances were labeled with one (or more) of the
labels from the set: angry, happy, neutral, sad. No ground-truth
can be defined for these utterances because there was no evalu-
ator agreement. EPs are ideally suited to work with this type of
data because they provide information describing the emotional
makeup of the utterances rather than a single hard label.

Two experiments were conducted on the non-prototypical
NMV data. The first experiment was a classification study in
which the non-prototypical NMV data were classified using
models trained on the full dataset, the prototypical data only,
and the non-prototypical MV data only. This study determines
how well suited the EP-SVM method, trained on labeled data,
is for recognizing ambiguous emotional content. This problem
is difficult because the classifiers must be able to identify the
categorical emotion labels when the evaluators themselves
could not. The evaluator confusion implies that the feature
properties of the utterances are not well described by a single
label. The second experiment was a statistical study designed
to understand the differences in the representations of the emo-
tions within the EPs. This study provides evidence validating
the returned EPs. It demonstrates the differences that exist
between EPs of specific ambiguous emotion classes. These
results suggest that the EP-SVM method returns meaningful
information in the presence of emotional noise.

There were a total of 420 non-prototypical NMV 2L utter-
ances considered in the two experiments.

A. Experiment One: Classification

In the classification study, three train-test scenarios were ana-
lyzed. In each study, the modeling goal was to recognize at least
one of the labels tagged by the evaluators in the 2L dataset using
the EP-SVMs. This modeling demonstrates the ability of the
EPs to capture emotional information in the presence of highly
ambiguous emotional content. Classifier success is defined as
the condition in which the classified emotion (the top estimate
from the EP) is in the set of labels reported by the categorical
evaluators. In the 2L dataset, there are two possible correct emo-
tions, as explained in III-A.

There were three training-testing scenarios. In the first sce-
nario, the models were trained on all the full data (prototypical
and non-prototypical MV). In the second scenario, the models
were trained on only prototypical utterances. In the final exper-
iment, the models were trained only on non-prototypical MV
utterances. The three experiments analyze the generalizability

TABLE V
RESULTS OF THE EP-SVM CLASSIFICATION ON THE 2L NON-PROTOTYPICAL

NMV DATA. THE RESULTS ARE THE PRECISION, OR THE PERCENTAGE OF

CORRECTLY RETURNED CLASS DESIGNATIONS DIVIDED BY THE TOTAL

RETURNED CLASS DESIGNATIONS

of the models trained on utterances with varying levels of am-
biguity in expression.

The results demonstrate (Table V) that the emotional profiling
technique is able to effectively capture the emotion content in-
herent even in ambiguous utterances. In all results presented,
the per-class evaluation measure is precision, and the overall
measure is accuracy. This decision was motivated by the eval-
uation structure. The goal of the system is to correctly identify
either one or both of the two possible answers. Consequently, a
per-class measure that necessitates a calculation of all of the ut-
terances tagged as a certain emotion is not relevant because two
components of the EP-SVM would then be in direct opposition
for the per-class accuracy measure. However, accuracy over the
entire classified set is relevant because a classifier that returns
either of the two listed classes can be defined as performing cor-
rectly. The chance accuracy (assigning a specific utterance to
the class with the highest prior probability) of the 2L dataset
was calculated by finding the emotion that co-occurred with the
other emotion labels most commonly. The class of neutrality
occurred with 41.6% of the labels. Thus, chance was 41.6%.

The maximal accuracy of the 2L dataset was achieved in
the non-prototypical MV training scenario with 72.6%. The
class-by-class precision results demonstrate that specific data
types are more suited to identifying the affective components
of emotionally ambiguous utterances.

The results indicate that anger was precisely identified
70%–77% of the time. This is of particular note because in this
data humans could not agree on the label; yet, when training
with the non-prototypical MV data, the EP-SVM could accu-
rately identify the presence of anger.

The results further indicate that the EP-SVM is able to reli-
ably detect one of the emotional labels of the utterances from
the 2L dataset. The overall accuracy of 72.6% is far above the
chance accuracy of 41.6%. Furthermore, since the chance classi-
fier is only capable of detecting neutrality, this supports the more
precise detection of the EP-SVM over a range of emotions.

TheEP-SVMmethodisable tocapture information thatcannot
be captured by the simplified baseline SVM discussed earlier.
In Fig. 7, all of the histograms demonstrate that, on average, all
four binary classifiers return non-membership results . The
confidence component allows the EP-SVM to disambiguate the
subtle emotional content of the non-prototypical NMV utter-
ances. The average profiles of Fig. 7 demonstrate that the EPs
are able to capture the emotion content of these utterances.

B. Experiment Two: ANOVA of EP Based Representations

In this statistical study, two ANOVA analyses are performed
on the profiles to determine the statistical significance of the rep-
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Fig. 7. Average emotional profiles for the non-prototypical NMV utterances. The error bars represent the standard deviation. (a) Neutral–Angry. (b) Neutral–
Happy. (c) Neutral–Sad. (d) Angry–Happy. (e) Angry–Sad. (f) Happy–Sad.

resentations of the emotions within the profiles. These studies
investigate the ability of the EPs to differentiate between the re-
portedly present and absent emotional content.

The results presented in this section are two-tailed ANOVAs.
These analyses were performed on the 2L dataset with EP
models trained using the full dataset (prototypical and non-pro-
totypical MV). This study will demonstrate that EPs are able
to capture multiple reported emotions. In the results described
below, the two reported labels for an utterance in the 2L dataset
will be referred to as the co-occurring labels or group (e.g.,
neutral and angry). Labels that are not reported are referred
to as the non-occurring labels or group (e.g., happy and sad).
Each ANOVA analysis studies sets of EPs grouped by the
co-occurring emotions (e.g., the neutral–angry group). These
groups will be referred to as EP-sets.

The first analysis studies the representation of pairs of emo-
tions in individual EP-sets by comparing the co-occurrence
(e.g., neutral and angry) group mean to the non-occurrence
(e.g., happy and sad) group mean. This study asks whether
the EP representation is able to capture the difference between
reportedly present and absent emotions. This analysis will be
referred to as the Individual EP-Set experiment.

The Individual EP-Set experiment demonstrates that in gen-
eral the representation of the co-occurrence group in an EP-set
differs from that of the non-occurrence group. In the angry-sad
EP-set this difference was significant at ; in the neu-
tral–happy and neutral–sad, this difference was significant at

. In the neutral–angry, this difference was significant
at . In the angry–happy and happy–sad EP-sets, this dif-
ference was not significant. This suggests that in the majority of
the cases, the individual EP-sets were able to differentiate be-
tween the presence and absence of the co-occurrence labels in
the emotional utterances (Table VI).

TABLE VI
ANOVA ANALYSIS OF THE DIFFERENCE IN GROUP MEANS BETWEEN

CO-OCCURRING AND NON-OCCURRING EMOTIONS WITHIN AN EP-SET

(INDIVIDUAL EP-SET EXPERIMENT). �� � � � ���� � � � � ����� �� �
� � ������ � � � � � ������

The next study builds on the results of the Individual EP-Set
results to determine if the representation of these co-occurring
emotion groups differs between their native EP-set and a
different (non-native) EP-set (e.g., compare the representation
of neutral and angry in the neutral–angry EP-set to the neu-
tral–angry representation in the happy–sad EP-set). This will
be referred to as the Group experiment.

The Group experiment found that, in most cases, the co-oc-
currence group mean differed between the native EP-set and
the non-native EP-sets when the co-occurrence emotions of the
non-native set were disjoint from the co-occurrence emotions
of the native set. This was observed most starkly with the
angry–sad EP-set. The representation of the co-occurrence
emotions differed from their native EP-set only when compared
with their representation in the neutral-happy EP-set, an EP-set
whose co-occurrence emotions were entirely disjoint. This
demonstrates that EP-sets must be differentiated based on more
than their co-occurrence emotions (Table VII).

The following two analyses determine if the representation of
the individual co-occurring emotions differs between the native
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TABLE VII
ANOVA ANALYSES OF THE DIFFERENCES BETWEEN REPORTED EMOTIONS IN PROFILES IN WHICH THEY WERE REPORTED VERSUS PROFILES IN WHICH THEY

WERE NOT. NOTE THAT THE EP VERSUS EP IS AN INTERACTION OF AN ANOVA ANALYSIS OF THE SET EP VERSUS EP AND AN ANOVA ANALYSIS OF THE

REPRESENTATION OF THE INDIVIDUAL EMOTIONS IN EACH EP-SET. �� � � � ���� � � � � ����� �� � � � ������ � � � � � ������

and non-native sets. These will be referred to as the Emo and
Emo experiments (e.g., compare the representation of neutral
in the neutral–angry EP-set to the neutral representation in the
happy-sad EP-set).

The Emo and Emo experiments demonstrate that the dif-
ference in the representation of the individual co-occurrence
emotions of anger, happiness, and sadness between their na-
tive and non-native EP-sets occurs most frequently and most
significantly when the co-occurrence emotion pair is neutrality
(Table VII).

The Individual EP-Set, Group, Emo and Emo analyses
demonstrate that aspects of the EP-sets are differentiable. The
final analysis compares the differences between the EP-set
representations as a whole. The result is an interaction term be-
tween the analysis of the difference between the representation
of each emotion in the EP-sets and the difference between the
two EP-sets’ values when grouped together (e.g., compare the
neutral–angry EP-set to the happy–sad EP-set). This will be
referred to as the versus EP experiment.

The EP versus EP experiment demonstrates that in 26 of the
30 cases the representation of the EP-sets differs significantly
between the sets. Furthermore, the cases in which the EP-sets
are not significantly different occur when the emotions repre-
sented by the two co-occurrence pairs share a similar co-oc-

currence emotion. The co-occurrence pairs of angry–happy and
angry–sad can both represent tempered anger. Consequently,
the EP-sets’ inability to strongly differentiate between the two
emotion types should not be seen as a failure but instead as the
EP-sets’ ability to recognize the inherent similarity in the emo-
tion expression types (Table VII).

These results suggest that certain EP-sets distinctly repre-
sent the underlying emotions reported by evaluators. This fur-
ther suggests that these EP-sets (rather than a single confident
label) can be used during classification to detect the differences
between ambiguous emotional utterances. This application of
EP-sets will be explored in future work.

VIII. CONCLUSION

Natural human expressions are combinations of underlying
emotions. Models aimed at automated processing of these emo-
tions should reflect this fact. Conventional classification tech-
niques provide single emotion class assignments. However, this
assignment can be very noisy when there is not a single label
that accurately describes the presented emotional content. In-
stead these utterances should be described using a method that
identifies multiple emotion hypotheses. If a single label is nec-
essary, it can be divined from the information contained within
the EP. However, when a hard label is not required, the entirety
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of the emotional content can be retained for higher-level emo-
tional interpretation.

The EP-SVM technique performs reliably both for prototyp-
ical and non-prototypical emotional utterances. The results also
demonstrate that the presented EP-based technique can capture
the emotional content of utterances with ambiguous affective
content. EPs provide a method for describing the emotional
components of an utterance in terms of a predefined affective
set. This technique provides a method for either identifying the
most probable emotional label for a given utterance or the rela-
tive confidence of the available emotional tags.

The neutral emotion class is difficult to classify because
there exists a wide range in the variability of emotion expressed
within this class. Neutral expressions may be colored by
shades of anger, happiness, or sadness. Evaluators also may
assign a class of neutrality when no other emotion is distinctly
expressed.

One of the strengths of the EP-based method is its relative in-
sensitivity to the selection of the base classifier. This study pre-
sented results utilizing an SVM four-way binary classifier. The
SVM classifier can be replaced by any classifier that returns a
measure of confidence. The results demonstrate that other clas-
sification methods (KNN, LDA) can also serve as the backbone
of an EP-based method.

Future work will include several investigations of the utility
of the EP-representation. In the presented work, the final
emotion assessments are made by selecting the most confident
emotion assessment from the generated profile. However,
this does not take into account the relationship between the
individual emotional components of the EP. Future work will
investigate classification of the generated profiles. Furthermore,
as discussed in Section I, frustration is not included in either the
EP testing or training. Future work will also investigate whether
frustration should be included as a component of the profile
or if the EP representation is sufficiently powerful to repre-
sent frustration without including it as a component. Finally,
future work will also investigate the utility of emotion-based
components for representation rather than data-driven clusters
as the relevant components in the profile construction. These
analyses will provide further evidence regarding the efficacy of
profile-based representations of emotion.

This paper presented a novel emotional profiling method for
automatic emotion classification. The results demonstrate that
these profiles can be used to accurately interpret naturalistic
and emotionally ambiguous human expressions and to generate
both hard- and soft-labels for emotion classification tasks. Fur-
thermore, EPs-based methods are relatively robust to classifier
selection. Future work will include utilizing EPs to interpret
dialog-level emotion expression and utilizing EPs for user-spe-
cific modeling.
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