
Into the Wild: Transitioning from Recognizing Mood in Clinical Interactions
to Personal Conversations for Individuals with Bipolar Disorder

Katie Matton1, Melvin G McInnis2, Emily Mower Provost1

{katiemat, mmcinnis, emilykmp}@umich.edu

Abstract
Bipolar Disorder, a mood disorder with recurrent mania and de-
pression, requires ongoing monitoring and specialty manage-
ment. Current monitoring strategies are clinically-based, en-
gaging highly specialized medical professionals who are be-
coming increasingly scarce. Automatic speech-based monitor-
ing via smartphones has the potential to augment clinical moni-
toring by providing inexpensive and unobtrusive measurements
of a patient’s daily life. The success of such an approach is
contingent on the ability to successfully utilize “in-the-wild”
data. However, most existing work on automatic mood detec-
tion uses datasets collected in clinical or laboratory settings.
This study presents experiments in automatically detecting de-
pression severity in individuals with Bipolar Disorder using data
derived from clinical interviews and from personal conversa-
tions. We find that mood assessment is more accurate using
data collected from clinical interactions, in part because of their
highly structured nature. We demonstrate that although the fea-
tures that are most effective in clinical interactions do not ex-
tend well to personal conversational data, we can identify al-
ternative features relevant in personal conversational speech to
detect mood symptom severity. Our results highlight the chal-
lenges unique to working with “in-the-wild” data, providing in-
sight into the degree to which the predictive ability of speech
features is preserved outside of a clinical interview.
Index Terms: Bipolar Disorder, mood prediction, computa-
tional paralinguistics, mobile health

1. Introduction
Bipolar Disorder (BD) is a severe and lifelong mental illness
characterized by pathological mood transitions into episodes of
mania and depression. Current patient monitoring strategies
depend on the availability of specialized medical professionals
to conduct regular in-person health assessments. However, we
face a global shortage of mental health workers, rendering this
form of clinical support inaccessible to a majority of those who
need it [1]. Even when available, clinical assessment is limited
by a reliance on retrospective patient accounts of mood symp-
toms. Thus, there is a glaring need for more effective mood
monitoring methods to supplement existing clinical approaches.

Smartphone-based monitoring is a potential solution [2].
Smartphones can passively collect behavioral data relevant to
mood, and smartphone ownership is becoming increasingly
ubiquitous [3], meaning such an approach could help to make
mental health care more widely accessible. Among the data
generated by smartphones, speech is a promising medium for
BD mood detection given its clinically validated connection to
mood symptoms [4, 5]. An extensive body of work explores
the automatic detection of mood states using speech captured in

clinical or laboratory settings (see [6] for details). A smaller,
more recent collection of work suggests that mood can also
be detected from natural interactions captured via smartphones
[7, 8, 9]. However, the differences between mood expression
inside and outside clinical environments remain underexplored.

We investigate differences between contexts, inside and
outside clinical environments, using two types of speech fea-
tures: speaker timing patterns and language usage. Existing
work has shown that timing features related to conversation dy-
namics, such as number of speaking turns and average speak-
ing length, are useful in classifying BD mood states [9]. Other
work has found that depression is associated with a decrease in
speech rate and an increase in pause time [10, 11]. Investiga-
tions into changes in language use associated with depression
have primarily been limited to analyses of social media data,
writing, and clinical interactions. Changes observed include an
increased usage of both negatively valanced language and first
person singular pronouns [12, 13, 14]. These changes, among
others, are commonly captured using the Linguistic Inquiry and
Word Count (LIWC) tool [15] or n-gram features [16, 17].

In this paper, we present the first study of how language
and speech timing patterns change as a function of both depres-
sion symptom severity and the context of the interaction. We
present models that can detect depression severity from both
clinical interactions and personal conversations and show that
there are substantial differences in the features important to each
task. We demonstrate that features with little value in a natural
conversation setting can emerge as maximally important in a
clinical setting as a result of their ability to quantify interview
structure. Out of the features analyzed, we find that measures
of emotion generalize best across the two settings and are espe-
cially salient to mood when captured from personal interactions.

2. PRIORI Dataset
The PRIORI dataset is a longitudinal collection of conversa-
tional speech data collected from 51 individuals with BD and 9
healthy controls [8]. The inclusion criteria for the study was a
diagnosis of BD type I or II. Exclusion criteria were the pres-
ence of a co-morbid illness or a history of substance abuse. Par-
ticipants were enrolled for six to twelve months, and during this
time, they used a smartphone with a secure recording applica-
tion installed. The app recorded their side of all incoming and
outgoing calls and then securely uploaded the data to a HIPAA-
compliant server. The dataset contains 52,931 calls amounting
to 4,000+ hours of speech. There are two types of calls, assess-
ment and personal, which we will describe in more detail.

Assessment calls: Study participants engaged in weekly inter-
views with clinicians using the smartphones provided. During
these calls, a clinician evaluated the participant’s mood using
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Table 1: Distribution of mood in all data and in test data.

# Assessment Calls # Personal Calls

Total Test Total Test

Depressed 155 100 127 87
Euthymic 131 67 88 50

the Hamilton Depression Scale (HamD) and the Young Mania
Rating Scale (YMRS) [4, 5]. The HamD and YMRS scores are
the ground truth prediction targets in our experiments.
Personal calls: All other calls in the dataset are examples of
“in-the-wild” data and consist of participants interacting natu-
rally with their personal contacts. Since the HamD and YMRS
scales are used to assess mood with respect to the previous
week, the assessment ratings can be applied to all personal calls
made in the week leading up to the assessment. However, we
hypothesize that the ratings are most strongly influenced by the
mood symptoms exhibited by the participant on the day of the
interview from which they were obtained. We restrict the set of
personal calls used to those that occurred on the same day as an
assessment to render it more likely that the assessment label is
relevant to the personal calls. We group all personal calls for
each subject on the day of an assessment into a single observa-
tion by concatenating their transcripts. From here on, we refer
to an assessment call and to grouped personal calls as a “call”.
Data selection: The size of the dataset we use is substantially
reduced compared to the full PRIORI dataset. In addition to
the restriction on personal calls previously described, we apply
several other selection criteria. We use only calls: (1) recorded
on Samsung S5 devices due to the lower recording quality of
the Samsung S3 and S4 devices, also used in this study, which
negatively affected Automatic Speech Recognition (ASR) per-
formance (see [18]), (2) with enough speech for feature extrac-
tion (see Section 3.1), (3) with a depressed or euthymic (asymp-
tomatic) label, and (4) in which the speaker has BD. Items 3 and
4 will be discussed in the following paragraph. Table 1 shows a
description of the data after applying this criteria.
Outcomes of interest: The conventional approach to mood
tracking is to predict mood classes [7, 9, 18, 19]. However,
monitoring mood fluctuations requires fine-grained measure-
ment. Thus, we treat the problem as a regression task and
predict mood symptom severity. We focus on depression pre-
diction because there are relatively few examples of mania in
the dataset. Further, we only use calls in which the speaker was
evaluated to be euthymic (HamD< 6, YMRS< 6) or depressed
(HamD > 10, YMRS < 6). This restriction has been applied
in previous work [18, 19] and allows us to focus on cases of
clear symptoms, making it easier to interpret the effects of con-
text. We exclude observations from healthy controls because
our goal is to track within-subject mood changes rather than to
distinguish between subjects with and without BD. In order to
better isolate the effects of context, we use the same set of sub-
jects for both our assessment and personal call experiments.
Train-test split: We test in a leave-one-subject-out (LOSO)
manner, ensuring that there is no overlap between the train and
test subjects in each fold. We require that subjects used for
testing have at least two euthymic and two depressed observa-
tions in both the assessment and personal call data (12 subjects).
There are 23 subjects that do not fit this criteria but which have
at least one observation in both types of data. For each test fold,
we train on the subset of the set of 12 subjects that excludes the
current test subject (11 subjects) and the set of 23 subjects.

3. Methods
3.1. Data pre-processing
We segment the calls into regions of continuous speech using
the COMBO-SAD algorithm [20] and the approaches outlined
in our previous work [18]. We transcribe the segments using an
ASR model, implemented in Kaldi using the ‘nnet2’ recipe [21].
The ASR model obtained an average word error rate of 39.7%
per segment when tested on the manually transcribed subset of
the PRIORI dataset (around 25 hours of speech) [22]. We use
only calls with at least 100 words and 5 speech segments, as pre-
liminary evidence suggested features extracted on shorter calls
were either extracted incorrectly or not meaningful.

3.2. Feature extraction
We identify a set of speech features that are motivated by clin-
ical studies of BD symptoms as well as existing work in auto-
matic mood state detection. Some of these features are com-
puted by applying a set of statistics, which are consistently:
mean, median, standard deviation, min, and max.
Speech intelligibility: ASR has higher confidence for well
enunciated speech. Previous work has found a link between de-
pression severity and a disruption in articulatory precision [23].
We capture this phenomenon by extracting statistics from the
segment-level ASR confidence measures to produce call-level
features. We also extract the proportion of out-of-vocabulary
(OOV) words in each call.
Non-verbal expressions: Non-verbal behavior provides infor-
mation regarding emotion and psychological well-being. We
compute counts of the instances of laughter and noise detected
by the ASR model, normalized by total word count.
Linguistic style: We present three feature sets that capture dif-
ferent attributes of linguistic style.
Syntax: We use the LIWC dictionary [15], used in previous
work in depression classification [14, 17], to compute normal-
ized counts of: (1) Part of Speech (POS) categories (e.g. first
person pronouns, adverbs) (2) verb tenses (e.g. past, present),
(3) swear words, (4) non-fluencies (e.g “hmm”, “um”), and (5)
fillers (e.g. “you know”). We supplement the 18 POS measures
included in LIWC with 5 additional POS categories derived us-
ing the Natural Language Toolkit (NLTK) POS tagger and with
13 POS ratio features (e.g. adjective:verbs).
Speech complexity and verbosity: We compute statistics from
the number of words and syllables present in each speech seg-
ment. We also use mean word length and the fraction of long
words (6+ characters) as features.
Speech graphs: Mota et al. created speech graphs to mea-
sure thought disorder [24] and psychosis [25]. Thought distur-
bances, such as rumination, are present in individuals with de-
pression [26, 27], and we hypothesize that the graph measures
can be used to capture them. We represent calls graphically us-
ing each unique word as a node. We insert an edge for every
pair of words uttered consecutively within the same speech seg-
ment. We transform each call into three graphs: (1) uses the
words directly, (2) uses the lemmatized form of each word, and
(3) represents each word as its associated POS. We use 12 graph
attributes as features, including average degree, density, diame-
ter, the size of connected components, and loop, node, and edge
counts (see [24] for details). We also include a version of each
feature that is normalized by total word count.
Semantic content: We capture speech content using two dif-
ferent approaches. We use LIWC to measure the presence of
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psychologically meaningful categories, such as emotion (e.g.
anger, anxiety), biological processes (e.g. body, health), and
personal concerns (e.g. work, death). Between these and the
LIWC linguistic style features, we use all categories from the
LIWC 2007 dictionary. In addition, we use Term Frequency-
Inverse Document Frequency (TF-IDF) features to encode the
use of specific words. We collect a vocabulary using all calls in
the PRIORI dataset with 50+ words that were recorded on Sam-
sung S5 devices (22,939 calls). We take all unigrams present in
10+ calls and all bigrams present in 50+ calls, resulting in a
set of of 20,738 n-grams. When computing TF-IDF values, we
normalize the term frequency by total word count.

Speaker timing: We use Kaldi to produce aligned word and
phone timing annotations for each call. We extract the follow-
ing features for words, phones, and pauses: (1) statistics over
the durations of all instances (e.g. mean word duration), (2)
statistics over the per second timing within all segments (e.g.
mean words per second across segments), (3) total count (e.g.
number of words), and (4) overall per second timing (e.g. words
per second). We also extract total call duration, total participant
speaking duration, ratio of participant speaking duration to total
duration, total pause duration, ratio of pause duration to total
duration, segment count, segments per minute, count of short
utterances (lasting less than 1-second), and short utterances per
minute, some of which were motivated by [9].

3.3. Data modeling

We use linear regression due to its high interpretability and ef-
fectiveness at modeling datasets of limited size. We assess per-
formance with LOSO cross-validation across the 12 test sub-
jects (see Section 2). For each fold, we first use the training
data to eliminate all features that do not have statistically sig-
nificant Pearson Correlation Coefficients (PCC) with the ground
truth depression ratings. We use a p-value of .01 as a cutoff for
all features aside from the TF-IDF features. The number of TF-
IDF features (20,738) is much larger than the total number of all
other features (217). We apply a stricter p-value cutoff of .0001
for the TF-IDF features to create a balance between the feature
sets and to compensate for the increased chance of spurious cor-
relations that arises from performing a large number of statis-
tical tests. After this step, we order the remaining features by
magnitude of correlation. We perform a second (nested) stage
of LOSO cross-validation, this time over the training speakers
with sufficient mood examples (11 subjects), to select the best
number of features with respect to this ranked list. We evaluate
performance using the PCC between the predicted and target
scores. Our goal, as defined by our clinical team, is to detect
individual-specific mood irregularities rather than to precisely
replicate clinical interview ratings. This makes being able to
determine the relative symptom severity of an individual at two
points in time more important than optimizing based on abso-
lute error.

4. Results
We obtain a PCC of .64 for assessment calls with a standard
deviation of .12 across subjects and a PCC of .32 for personal
calls with a standard deviation of .25 across subjects. These
results demonstrate that we can detect depression severity from
both structured assessments and “in-the-wild” personal phone
calls. Our performance is better on assessment calls than on
personal calls, and in our remaining analysis, we examine the
factors that contribute to this performance disparity.

Table 2: Feature ablation results: mean and standard deviation
of the PCC between predicted and target depression ratings.

Features Assessment Personal

Speech Intelligibility - .15± .40
Non-Verbal Expressions - -
Ling. Style .30± .38 -
Speaker Timing .63± .15 -
LIWC (emotion only) .10± .32 .25± .42
TF-IDF .46± .22 -

We perform a feature ablation study, training models us-
ing each feature category (see Section 3.2) individually. We
apply the same feature set reduction steps described previously
(see Section 3.3), keeping TF-IDF features correlated with p <
.0001 and all other features with p < .01. If the resulting fea-
ture set is empty, we do not present a correlation score (‘–’ in
Table 2). There is a marked dissimilarity between the feature
sets effective at detecting depression severity in the assessment
and personal data. While the linguistic style, speaker timing,
and TF-IDF feature sets have high predictive value for the as-
sessment calls, they are not significantly correlated with depres-
sion for the personal call data. We also observe that the LIWC
emotion and speaker intelligibilty features have increased use-
fulness for personal calls. These two feature types may be con-
nected; previous work has shown that speech recognition per-
formance degrades when the speech is emotional [28, 29, 30].

We examine the utility of individual features by computing
their correlation with the clinically derived depression sever-
ity ratings (both are call-level). We exclude TF-IDF features
from this analysis to limit the number of statistical tests applied.
We adopt the Bonferroni correction when assessing significance
values and use α = .05/217 = 2.3e−4. The most strongly cor-
related features for the assessment and personal call data are
presented in Table 3. There are 21 features that are statistically
significant for the clinical data and 11 for the personal data, with
notably little overlap between the two sets. Only two features,
negative emotion and anxiety, are significant for both data types.

5. Discussion
We identify key patterns from our results that have meaningful
implications for the development of automatic mood detection
systems using both clinical and “in-the-wild” data.

5.1. Benefits of structure in clinical interactions
Features that directly or indirectly measure call duration, such
as total duration, segment count, and short utterance count, have
a strong positive correlation with depression severity for assess-
ment calls, but are not statistically significant for personal calls
(Table 3). The structure of the HamD interview provides an
explanation for this: many of the interview questions, such as
“have you experienced feelings of guilt?” and “have you had
difficulty falling asleep?”, naturally elicit longer responses from
individuals who have experienced the symptoms in question. In
inspecting the assessment calls, we also find that clinicians tend
to ask more follow-up questions to highly symptomatic individ-
uals. These findings provide insight into why a model that uses
only speaker timing features is effective at detecting mood for
assessment calls, but not for personal calls (Table 2).

Assessment calls are explicitly focused on mood symptoms,
which makes mood detection based on word choice easier. As
seen in Table 2, a model trained using only TF-IDF features ob-
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Table 3: Correlation with depression severity of top ten features for assessment and personal calls (showing correlation for both
assessment and personal calls) excluding TF-IDF measures. Significance is asserted (*) for α = 2.3e−4 (Bonferroni correction).

Best Assessment Features Assessment Personal Best Personal Features Assessment Personal

noun .46∗ .23 negative emotion (LIWC) .25∗ .37∗
total duration .42∗ .11 laughter −.04 .32∗
ave degree pos graph norm −.41∗ −.15 ASR confidence median −.07 −.32∗
segment count .37∗ .07 anger (LIWC) .04 .31∗
determiner −.30∗ −.20 ASR confidence mean −.08 −.31∗
assent (LIWC) .29∗ .23 anxiety (LIWC) .23∗ .30∗
lemma graph density −.28∗ −.01 death (LIWC) .12 .30∗
naive graph density −.27∗ −.01 noise .04 .29∗
leisure (LIWC) −.26∗ −.11 ASR confidence std .09 .28∗
short utterance count .25∗ .05 pauses per second .01 .25∗

tains a PCC of .46 for the assessment calls, but fails to work for
personal calls (we also tested a less restrictive p-value cutoff of
.1 to produce a non-empty feature set and obtained a PCC of
−.02). We examine the TF-IDF features selected by the model
on the assessment calls and present the features selected by all
training folds in Table 4. We find that most of the features se-
lected, such as “yes”, “normal”, and “really bad”, appear to be
direct responses to questions about mood symptom severity. As
shown in Table 3, we also observe that assessment calls have
higher correlation scores than personal calls for assent (which
provides a measure of “yes” responses) and leisure (which re-
lates to the topic of outside activities on the HamD test). Again,
we see that the narrow topic focus of the assessment interviews
increases the utility of certain language features. These results
highlight the increased difficulty of finding language patterns
that generalize across subjects when using “in-the-wild” data,
especially for datasets of limited size.

We examine how performance changes when we explic-
itly remove features that capture the structure of the clinical
interview. First, we exclude all features that directly or indi-
rectly measure call length: all duration measures, unnormalized
counts, and most of the graph features (many are correlated with
call duration with a PCC > .6). The results are displayed in Ta-
ble 5. With this restriction, the performance of the model on the
assessment calls drops from a PCC of .64 to a PCC .51. We
also test the exclusion of the TF-IDF features and find that per-
formance drops to a PCC of .56. Without call length related fea-
tures or TF-IDF features, the correlation obtained (PCC = .31)
is comparable to that obtained on the personal calls. When we
apply these same restrictions to the personal calls, the perfor-
mance remains relatively constant, indicating that these features
lack significance as measures of natural interactions.

5.2. Emotional openness in natural interactions
We see that features that measure emotional distress, such as
negative emotion, anger, and anxiety, have increased correla-
tion scores for the personal calls, compared to the assessment
calls (Table 3). Surprisingly, we also observe a high correlation
between laughter and depression. However, upon investigating,

Table 4: Features selected by TF-IDF-only model on assess-
ment calls: mean and standard deviation of model coefficients.

Feature β Feature β

yes 2.3± .49 people .84± .16
good −1.14± .35 bad .61± .18
normal −1.12± .28 hand .60± .21
yeah .93± .14 nope −.56± .15
really bad .90± .10 every day .42± .33

we found that our ASR model, which was not trained to detect
crying, often outputs either “laughter” or “noise” when crying
occurs in a speech segment. Therefore, the high correlation of
these two features with depression is likely explained by an in-
crease in instances of crying. These results, which are unique to
the personal calls, suggest that individuals display more open-
ness in their emotional expressions during interactions with per-
sonal contacts than they do in a clinical interview setting. Our
findings provide evidence that this greater range and intensity
of emotional expression is useful for mood detection.

6. Conclusion
In this paper, we demonstrate that the predictive ability of
speech features varies depending on the nature of the interac-
tions from which they are derived. We present evidence that the
structure of clinical interviews simplifies the task of mood de-
tection; features that capture aspects of interview structure are
effective at detecting mood from the assessments calls, but are
less useful when applied to the “in-the-wild” personal call data.
However, we still successfully detect mood from the personal
calls using an alternative set of features that are made more
salient by the increased emotional openness present in natural
interactions. In doing so, our work demonstrates the potential
for smartphone-based monitoring of BD mood symptoms. In
future work, we plan to fine-tune our ASR model with the man-
ually transcribed subset of our dataset to examine the effect of
increased ASR accuracy on system performance. We also will
explore how our findings translate to larger datasets and to the
detection of manic symptom severity.
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Table 5: Ablation results for features associated with the struc-
ture of a clinical interview: mean and standard deviation of the
PCC between predicted and target depression ratings.

Features Assessment Personal

All .64 ± .12 .32 ± .25
All - Call Length .51 ±.22 .31 ±.26
All - TF-IDF .56 ±.16 .34 ±.27
All - Call Length - TF-IDF .31 ±.23 .33 ±.27
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