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Abstract—Automatic speech emotion recognition provides computers with critical context to enable user understanding. While
methods trained and tested within the same dataset have been shown successful, they often fail when applied to unseen datasets. To
address this, recent work has focused on adversarial methods to find more generalized representations of emotional speech. However,
many of these methods have issues converging, and only involve datasets collected in laboratory conditions. In this paper, we
introduce Adversarial Discriminative Domain Generalization (ADDoG), which follows an easier to train “meet in the middle” approach.
The model iteratively moves representations learned for each dataset closer to one another, improving cross-dataset generalization.
We also introduce Multiclass ADDoG, or MADDoG, which is able to extend the proposed method to more than two datasets,
simultaneously. Our results show consistent convergence for the introduced methods, with significantly improved results when not
using labels from the target dataset. We also show how, in most cases, ADDoG and MADDoG can be used to improve upon baseline
state-of-the-art methods when target dataset labels are added and in-the-wild data are considered. Even though our experiments focus
on cross-corpus speech emotion, these methods could be used to remove unwanted factors of variation in other settings.

Index Terms—emotion recognition, cross-corpus, adversarial, domain generalization.
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1 INTRODUCTION

AUTOMATIC speech emotion recognition has been explored
by researchers as a way to bridge the communication gap

between humans and computers. This information is critical to
sustain long-term interaction between humans and machines.
For example, emotion can impact a person’s current attention
level, their ability to perceive and remember information,
and their capacity to make decisions [1]. However, compared
with many other machine learning tasks, including automatic
speech recognition (ASR), speech emotion datasets are much
smaller and less varied [2]. This is due to the large time and
effort often needed to collect and annotate emotional speech.
As a result, even when an emotion model is successfully trained
on one dataset, it often fails when applied to another [3].
This has motivated researchers to explore cross-corpus training
methods to be able to utilize multiple datasets at once and to
create systems more robust to unseen data. In this paper, we
introduce and explore new methods for generalizing represen-
tations of speech for emotion so that recognition performance
is improved across datasets.

Emotion is only one of several factors that impacts the
acoustics of speech. Some factors that change across datasets
and can impact affect recognition include the environmental
noise [4], the spoken language [3], the recording device quality
[5], and the elicitation strategy (acted versus natural) [6]. Addi-
tionally, a mismatch in subject demographics between datasets
can result in misclassification, due to the small numbers of
participants common in speech emotion recognition datasets
[2]. Early work in cross-corpus speech emotion recognition
attempted to address these differences with feature normaliza-
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tion [3], [7], sample selection [8], and decision fusion [9]. Most
modern techniques of cross-corpus speech emotion recog-
nition use deep learning to build representations over low-
level acoustic features. Many of these techniques incorporate
tasks in addition to emotion to be able to learn more robust
representations [6], [10].

More recently, speech research has followed the popular-
ization of adversarial methods, including Generative Adversar-
ial Networks (GANs) [11], [12], [13], [14], Wassersteain GANS
(WGANS) [15], and CycleGANs [16], [17], [18]. However, many
of these generative speech transfer models introduce noise
and have a long way to go, as explored by Kaneko et al.
[18]. To get around this issue, some cross-corpus research has
instead explored discriminative adversarial methods, including
Adversarial Discriminative Domain Adaptation (ADDA) [19]
and Domain Adversarial Neural Networks (DANNs) [20], [21].
While ADDA has been effectively applied in image recognition
[19], it has not yet been successfully applied to speech emotion.
This is likely because the target representation is learned inde-
pendent of the output classifier and there is no guarantee that a
lower varying characteristic, like emotion, would be preserved.
DANNs work by using the GAN discriminator with the aim to
"unlearn" domain from a target representation [20]. While this
has been effectively applied to emotion, the authors note the
difficulty in getting the method to converge in certain cases
[21]. All of these methods are explained in greater detail in
Section 2.

In this paper, we investigate three models for speech
emotion recognition across datasets. Our baseline model is
a Convolutional Neural Network (CNN), which is commonly
employed in automatic speech emotion recognition [22], [23],
[24]. CNNs are able to learn temporal filters across features and
distill an entire utterance down into a static representation for
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more conventional fully connected layers to model. However,
this model does not explicitly capture the effects of dataset
or incorporate unlabelled data. We introduce Adversarial Dis-
criminative Domain Generalization (ADDoG) — a method for
finding a more generalized intermediate representation for
speech emotion across datasets. The network implementation
is similar to CNN, except that an additional critic network
is appended to the utterance-level representation layer. We
adversarially train this network to iteratively move the different
dataset representations closer to one another. We demonstrate
that this “meet in the middle” approach always converges and
improves upon previous, less stable, methods [20], [21]. Finally,
we implement and explore Multiclass ADDoG, or MADDoG,
which is able to incorporate many datasets at a time and build
an even more robust and generalized representation.

We propose four sets of experiments to determine the
effectiveness of our models for cross-corpus testing under
different conditions. Our first experiment examines the case
of training on one dataset and testing on another, allowing
ADDoG to also incorporate the unlabelled test features for
training. This mirrors the transductive learning approach, seen
in prior speech emotion work [25], [26]. We constrain our first
experiment to only consider datasets recorded in a laboratory
environment. Experiment 2 expands on this by introducing
increasing amounts of labelled data available from the target
dataset. Experiment 3 explores the impact of training on a
laboratory dataset and testing on an in-the-wild dataset. We
also look into incorporating three total datasets into training
simultaneously, and present MADDoG as especially suited to
this problem. Finally, Experiment 4 does the reverse of Experi-
ment 3 and investigates training on in-the-wild data and testing
on more traditionally recorded laboratory speech.

Our results indicate that ADDoG consistently converges
and is able to construct a more generalized representation
for cross-corpus testing. This affirms the iterative “meet in the
middle” approach to domain generalization. We find significant
improvements in performance versus the baseline systems in
all experiments with no added labelled target data. In addi-
tion to attaining higher performance, the ADDoG results have
lower variance across repeated experiments, indicating better
stability, when compared with CNN. Additional experiments
show that ADDoG performs the best in the majority of cases
when labelled target data is available, especially when the set
is fairly small. However, the margin of improvement decreases
with more added target data, implying that there is a trade-
off between building a generalized model and specializing to
the target domain. This trend holds true even with in-the-
wild target data, demonstrating the robustness of the ADDoG
technique. We find the improvement in performance to be
at least as good as the benefit of doubling the amount of
labelled target data. Finally, we show that MADDoG is able to
improve further upon ADDoG when multiple source datasets
are available by explicitly modelling all dataset differences.

The novelty of this paper includes: (1) the ADDoG model,
which allows for better generalized representation convergence
by “meeting in the middle”; (2) the MADDoG method, which
extends ADDoG to allow for many dataset differences to be
explicitly modelled; (3) an analysis of cross-corpus experiments
where both laboratory and in-the-wild data are trained and
then tested on the other.

2 RELATED WORKS

2.1 Cross-Corpus Speech Emotion Recognition

Speech emotion models trained and tested on a single dataset
often fail when new datasets are introduced. This can be due
to differences in recording conditions, microphone quality,
elicitation strategy (acted versus natural), and the distribution
of labels [3]. Additionally, the demographics of subjects may
widely vary between datasets [2].

One of the earliest works in cross-corpus emotion by
Schuller et al. examined how acoustic and annotation dif-
ferences can result in decreased performance [3]. They ex-
plored different techniques of feature normalization and found
speaker-based z-normalization to work best. Additionally, they
demonstrated how differences in selected sub-groups of emo-
tions can cause large discrepancies in performance. This indi-
cated the importance of carefully selecting annotations across
all datasets in a multi-corpus experiment. Zhang et al. ad-
dressed the problem of dataset label mismatch by creating
a knowledge-based mapping between classes [7]. They fur-
ther explored feature normalization for utterance-level features
and found that within-corpus normalization with unlabelled
data boosted performance. Additional work by Schuller et al.
explored how selecting only the most prototypical examples
when training cross-dataset systems can improve activation
classification [8]. This suggests that the most exemplar samples
within datasets may also be those samples most consistently
represented across datasets. Later work demonstrated how
fusing the outputs of expert systems trained on individual
datasets can outperform classifiers of the agglomerated data
[9]. However, this performance difference depended heavily on
the selected model.

While initial work focused on feature normalization, sam-
ple selection, and decision fusion, emotion researchers began
exploring more complex methods of adapting features and
models for cross-corpus testing. Hassan et al. explored how pre-
vious transfer learning methods, including Kernel Mean Match-
ing (KMM), Unconstrained Least-Squares Importance Fitting
(uLSIF), and the Kullback-Leibler Importance Estimation Pro-
cedure (KLIEP), could be used to compensate for dataset
differences [27]. Song et al. investigated how dimensionality
reduction algorithms could be used to form a similar feature
space for different speech emotion datasets [28]. They found
that Locality Preserving Projections (LPP), introduced in [29],
resulted in the best classification performance. Abdelwahab et
al. explored variations of support vector machines (SVMs) for
supervised adaptation with small amounts of target domain
data [30]. Using just 9% of the data, they were able to use
Adaptive SVMs and Incremental SVMs to significantly improve
cross-corpus performance compared with no data.

More recent speech emotion research has focused on learn-
ing deep representations over low-level features instead of
the SVMs and utterance-level features found in prior work.
In particular, training deep networks over multiple tasks si-
multaneously has been shown to improve performance when
considering cross-corpus emotion. Parthasarathy et al. explored
jointly predicting activation, valence, and dominance with a
deep neural network (DNN), considering one as the primary
task and the others as auxiliary [10]. This method significantly
increased cross-corpus performance compared to a single task
system, especially for models with large layer sizes. Kim et
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al. investigated whether adding additional non-emotion tasks,
such as gender and the naturalness of the expression, would
improve cross-corpus performance [6]. They achieved better
or comparable performance when compared with systems not
incorporating the additional tasks.

Another cross-domain framework that has been effectively
applied within the speech emotion community is transductive
learning. Traditional inductive learning first learns a model and
then makes predictions on unseen data. Transductive learning
instead aims to make predictions on a set of test data known
in advance [31]. Because of this, it is possible to incorporate
the unlabelled test data into the training procedure. Zong et
al. explored an extension of linear discriminate analysis (LDA)
for improving cross-corpus emotion recognition from speech
[25]. Their method, called sparse transductive transfer LDA, or
STTLDA, achieved significant improvement over SVM. Further
work by Song et al. demonstrated another extension of LDA,
Transfer Supervised Linear Subspace Learning (TSLSL), which
again provided improvement for speech emotion within the
transductive framework [26].

2.2 Adversarial Methods
With the introduction of Generative Adversarial Networks
(GANs) [11], there has been a large increase in the amount
of adversarial methods for cross-corpus modelling. GANs work
by iteratively training a generator and a discriminator. The gen-
erator aims to create data that matches a certain distribution
of real examples from just a random seed. The discriminator
is trained to be able to tell apart these generated and real
examples. A well-trained discriminator can be used to improve
the authenticity of generated data by training a generator to
fool the discriminator. To further expand on GANs, Radford
et al. introduced Deep Convolutional GANs (DCGANs) [12].
They were able to improve convergence by using convolutions
instead of fully connected layers. Automatic speech emotion
recognition has begun to take advantage of these methods.
Sahu et al. [13] explored how GANs could be used to augment
utterance-level features, while Chang et al. [14] used DCGANs
to improve performance on spectrograms.

The training of GANs can be unstable and relies on care-
fully tuned learning rates and numbers of generator versus
discriminator iterations for convergence [12]. To address this
issue, Arjovsky et al. introduced the Wasserstein GAN (WGAN)
and was able to improve the convergence of GANs with a few
minor changes [15]. The discriminator is replaced with a critic
by removing the sigmoid activation on the output. Instead of
trying to determine if examples are real or fake, like a dis-
criminator, it instead learns to approximate the Wasserstein, or
earth-mover’s, distance between the real and fake distributions.
This allows the system to have less sensitivity to over-training
a discriminator, which often results in a saturated sigmoid
function. It accomplishes this by clipping the critic weights
to small values every iteration. This enforces the Lipschitz
constraint and ensures that the output of the network does
not grow infinitely. Instead, the network can only increase the
output by finding the most succinct method of differentiating
the real and fake examples. This allows a critic to be trained for
many iterations before training the generator, resulting in more
reliable gradients.

One of the first GAN-based methods to show promise for
cross-domain applications was the CycleGAN by Zhu et al.

[16]. This allowed for style transfer of images by converting
from the style of one domain to another, while preserving
the overall structure. A CycleGAN consists of two DCGANs
working in tandem to convert from domain one to domain
two and vice versa. Because CycleGANs can transfer in both
directions, they are able to be trained with an additional
reconstruction term that makes sure the overall structure of a
transferred image is maintained. Zhu et al. demonstrated that
is was possible to augment a facial emotion dataset by using
CycleGANs to transfer between different emotions [17]. This
allowed for training with balanced classes by transferring all
utterances to each class, regardless of the original emotion.
They found improved classification performance using this
balancing method. Kaneko et al. explored subject conversion
for speech using CycleGANs with some success, but found
that there was still a large gap in quality for the real versus
transferred samples [18]. We were unable to find published
work on CycleGANs for speech emotion recognition, possibly
because of this lack of transfer quality.

To work around this transfer quality issue, some adver-
sarial methods have instead forgone generative methods for
discriminative ones. For example, Tzeng et al. explored the
method Adversarial Discriminative Domain Adaptation (ADDA)
for transferring to a target domain [19]. In the first stage of
learning, the source domain data is encoded to an intermediate
representation using a series of convolutions. The represen-
tation is then passed through a classifier and both networks
are optimized based on the available labels. Next, a separate
encoder is trained for the target dataset, using a discriminator
to ensure that the source and target representations are similar.
Finally, the target encoder is appended to the classifier that was
trained on the source data and target predictions are output.
This method produced significantly better and more balanced
class performance on cross-corpus testing of numerical image
datasets. However, this method makes the assumption that the
representation trained by the second encoder will still preserve
structure meaningful to the classifier.

2.3 Domain Generalization

Most of the prior cross-domain methods focus on transferring
from one domain representation to another (domain adap-
tation). Domain generalization instead focuses on creating a
middle-ground representation for all data [36]. Prior domain
adaptation and generalization methods can be further divided
into generative methods and discriminative methods. Figure 1
gives a categorization of the main methods referenced in this
paper.

One common method for finding a domain generalized rep-
resentation is an autoencoder. Autoencoders work by convert-
ing the original features into a more compressed representation
using smaller layer sizes, sparsity, or other regularization meth-
ods. Deng et al. examined the use of denoising autoencoders
(DAAs) for cross-domain speech emotion recognition [4], [32].
DAAs introduce noise to the input features and encourage
the network to compress and reconstruct the features without
the noise. This allows for the intermediate representation to
discover a more noise robust representation that can work
well across domains. Further work has examined different
variations of autoencoders for speech emotion recognition,
including Variational Autoencoders (VAE) [33], [34], Adversarial
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Fig. 1. The main domain adaptation and domain generalization meth-
ods referenced in this paper, divided by generative and discriminative
methods. Prior work is listed with related citations and abbreviations
defined in Section 2. Methods introduced in this paper are bolded and
are explained in Section 4.

Autoencoders (AAE) [34], [35], [36], and Adversarial Variational
Bayes (AVB) [34].

Another method that does not rely on autoencoders is
Domain Adversarial Neural Networks (DANNs), introduced by
Ajakan et al. [20]. DANNs have three main components: (1)
feature extractor; (2) label classifier; (3) domain classifier. The
input data is passed through the feature extraction layers. The
representation is then fed to both the emotion classifier and the
domain classifier. However, unlike multitask learning, where
the domain is just another task, a reversal gradient layer is
applied to the input of the domain classifier. This results in the
network backpropagating a gradient to correctly classify the
label but to incorrectly classify the domain, generalizing the
intermediate representation. Abdelwahab et al. successfully ap-
plied this method to cross-corpus speech emotion recognition
and showed significant improvement versus a model trained
on the source dataset alone [21].

2.4 Open Challenges
While many papers have explored cross-corpus speech emo-
tion recognition, there are many challenges remaining for the
field. Adversarial methods, led by CycleGANs [16], have shown
promise for directly converting speech between datasets. Once
all utterances are converted to one domain, the differences
should no longer need to be considered during further mod-
elling. However, there is much noise introduced in the out-
put, making this currently impractical [18]. Other generative
methods, such as autoencoders and their many variants, get
around this by instead just using the intermediate represen-
tation for classification. Yet, it is unclear if compressing the
representation preserves the emotion component of the signal,
particularly given emotion’s relatively slowly varying nature.
In fact, prior work has shown that when the speech signal is
compressed, the emotion content can be lost (e.g., Principal
Component Analysis (PCA) [37], [38]).

Other discriminative methods have been introduced to
avoid these issues, including ADDA [19] and DANN [21]. ADDA
relies on training a feature transformation for the target dataset
to match the mid-level representation for the source dataset.
Yet, again, there is no guarantee that this transformation will
preserve the emotion information present in the original ex-
ample because the emotion classifier is trained separately. This
is related to a well known issue with GANs, known as mode
collapse, which results in the generator converging to just a few
convincing examples, regardless of the input [15]. Additionally,
emotion is less likely to be preserved when simply matching
representation distributions, due to its relatively lower variabil-
ity when compared with the entire speech signal (again, see the
issues with emotion and PCA [37], [38]). The DANN method
improves on this by relying on a shared feature representation
[20]. However, the researchers noted that DANN had issues
converging on certain sets of parameters when training on
speech emotion [21]. This could be due to the fact that DANNs
attempt to “unlearn” domain, producing an unclear gradient.
Finally, along with most other previously referenced papers in
speech emotion recognition, the demonstration was on lab-
oratory recorded datasets (IEMOCAP and MSP-Improv) rather
than in-the-wild corpora. Further work is needed to incorporate
more datasets simultaneously to improve generalization, as
well as an exploration of the challenges of working with in-
the-wild data.

3 DATASETS

This section describes the three different datasets included in
this work: IEMOCAP [39], MSP-Improv [40], and the PRIORI
Emotion [41]. The next three sections include summaries of
each of the included datasets. Table 1 describes the main at-
tributes of each dataset. The final sections describe the emotion
labeling and the audio preprocessing and feature extraction.

3.1 IEMOCAP
The “Interactive Emotional Dyadic MOtion Capture Database”
(IEMOCAP) was created to explore the relationship between
emotion, gestures, and speech. Ten actors (five male and five
female) were recorded over five sessions. Each session con-
sisted of a male and a female performing given either a series of
scripts or improvisational scenarios. During the session, motion
capture markers were attached to just one of the actors at
a time. Once all scripts and improvisations were performed,
the other actor was given the motion capture markers and the
whole process was repeated. The audio was recorded using two
high quality shotgun microphones at a 48 kHz sampling rate
and later downsampled to 16 kHz.

The data were segmented by speaker turn, resulting in
10,039 total utterances (5,255 scripted turns, 4,784 improvised
turns). Segments were then annotated for emotion, including
valence and activation on a 1 to 5 scale. Between two and four
annotations were performed per utterance. Further informa-
tion about the IEMOCAP dataset can be found in [39].

3.2 MSP-Improv
The MSP-Improv dataset aims to capture more naturalistic
emotion from improvised scenarios, while also partially con-
trolling for lexical content. The collection involved a total of
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TABLE 1
Summary of Datasets

IEMOCAP MSP-Improv PRIORI Emotion
Subjects 10 12 12

Male 5 6 5
Female 5 6 7

Environment Laboratory Laboratory Cell Phone Calls

Language English English English

Sample Rate 16 kHz 44.1 kHz 8 kHz

Valence Scale 1 - 5 1 - 5 1 - 9
Mean 2.79 3.02 4.86
Std. 0.99 1.06 1.12

Hours 12.4 9.6 21.7
Without Ties 8.6 8.9 16.4

Utterances 10039 8438 11402
Without Ties 6816 7852 8685
Low Valence 3181 2160 2809
Mid Valence 1641 2961 4779
High Valence 1994 2731 1097

Utterance Len.
Mean (sec.) 4.5 4.1 6.8
Std. (sec.) 3.1 2.9 4.4

twelve actors (six male and six female). Like IEMOCAP, the
dataset is split into six sessions, each including interactions
between one male actor and one female actor. Each actor
wore a collar microphone to record speech at 48 kHz (later
downsampled to 44.1 kHz).

MSP-Improv controls for lexical content by including spe-
cific “target sentences” with fixed lexical content that can be
embedded into different emotional scenarios (i.e., angry, happy,
sad, neutral). In each pair, one of the actors was tasked with
ensuring that the target sentence was spoken in each scenario.
Once all target sentences and scenarios were recorded, the
actors switched roles and the second actor assumed this re-
sponsibility. Using this method, the researchers were able to
control for lexical content, while still allowing for more natural
emotion expression.

The data was divided into 652 target sentences, 4,381
improvised turns (the remainder of the improvised scenario,
excluding the target sentence), 2,785 natural interactions (in-
teractions between the actors in between recordings of the
scenarios), and 620 read sentences (emotional readings of
the target sentences). This totaled 8,438 utterances over 8.9
hours. These utterances were then annotated for emotion
using crowd-sourcing on Amazon Mechanical Turk. Valence
and activation were rated on a scale from 1 to 5. There is a
minimum of five annotators per utterance up to a maximum of
50 (median of 5). Please refer to [40] for additional information
about the MSP-Improv dataset.

3.3 PRIORI Emotion Dataset
The PRIORI Emotion dataset is an affect-annotated subset of
the larger PRIORI (Predicting Individual Outcomes for Rapid In-
tervention) bipolar mood dataset, which includes smartphone
calls from 51 patients and 9 healthy controls over the course
of six-months to a year [5], [41], [42], [43]. The PRIORI Emo-
tion dataset was obtained by first automatically segmenting
the PRIORI dataset using the COMBO-SAD algorithm [44],
as described in our prior work [5]. We consider only the 12
subjects who provided consent to have their calls manually

annotated. Segments were chosen amongst the 12 subjects
to provide diversity across both subjects and mood states.
The researchers manually examined each selected segment
before annotation to remove those that were inappropriate
(identifiable information, no speech, etc.). Finally, the segments
were annotated by 11 annotators on a 9-point Likert scale. Each
segment received between 2 and 6 ratings.

The dataset contains 13,611 segments over 25.2 hours. We
downsampled this dataset, selecting segments for which all
assigned annotators were able to provide a rating, resulting in
a dataset with 11,402 utterances over 21.7 hours. See Khorram
et al. [41] for further information about the PRIORI Emotion
dataset and [5], [42], [43] for the PRIORI bipolar mood dataset.

3.4 Emotion Labeling
Each of the datasets are segmented and rated on a dimensional
scale for valence and activation by multiple annotators. We
use these dimensional ratings for emotion, instead of dis-
crete classes, as we hypothesize they are more consistently
interpretable across datasets [45]. Further, we focus only on
valence in this study, as our preliminary experiments did not
show a benefit to domain generalization for activation. Valence
has typically been more difficult to classify from speech than
activation, due to the strong relationship between pitch, energy,
and activation [46], [47].

We follow the method similar to [14] and [48] to convert
the dataset annotator ratings into a three bin vector for soft
classification. The middle bin consists of valence ratings equal
to 3 for IEMOCAP and MSP-Improv and 5 for PRIORI Emotion.
The other two bins are valence ratings that fall below or above
this midpoint. Each vector is formed by counting each of the
ratings belonging to the bins. These counts are then divided
by the total number of ratings so that the vector sums to one.
For example, if three IEMOCAP annotators gave the ratings of
3, 4, and 5, the soft vector representation would be [0.0, 0.33,
0.66]. However, unlike [48], we do not include utterances with
no clear majority bin to make the analysis more straightfor-
ward. This matches other speech emotion work that only used
majority agreement [49]. Additionally, this corresponds with the
finding by Schuller et al. that prototypical examples are more
useful for cross-corpus speech emotion recognition [8].

The IEMOCAP dataset includes 3,181, 1,641, and 1,994 low,
medium, and high valence utterances, respectively. The MSP-
Improv dataset includes 2,160 low, 2,961 middle, and 2,731
high valence utterances. The PRIORI dataset includes 2,809 low,
4,779 middle, and 1,097 high valence utterances.

3.5 Preprocessing and Feature Extraction
We downsample the audio between datasets to match. For
experiments involving just IEMOCAP and MSP-Improv the
sample rate is 16 kHz. If PRIORI data are involved then all
data are downsampled to 8 kHz. The audio is then normalized
to 0dB FSD using the SoX command line tool [50].

We then extract 40 dimensional Mel Filter Banks (MFBs)
using the Kaldi speech recognition toolkit [51]. The default
options are used - a povey window with frame length of 25
ms, frame shift of 10 ms, preemphasis coefficient of 0.97,
low cutoff of 20 Hz, and outputting log filterbanks. Because
this produces features of different lengths for each utterance,
batches have their MFBs padded by zeros to the length of the
longest utterance.
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Fig. 2. Convolutional Neural Network (CNN). Consists of two main parts:
(1) feature encoder; (2) emotion classifier. The feature encoder uses
a set of convolutions and global pooling to create a 128-dimensional
utterance level representation. The emotion classifier then uses fully
connected layers and a softmax layer to output the three bin valence
probability distribution.

4 CLASSIFICATION MODELS

In this section, we present the three different classification
models used in this paper: a simple Convolutional Neural Net-
work (CNN), Adversarial Discriminative Domain Generalization
(ADDoG), and Multiclass ADDoG (MADDoG), which is an ex-
tension of ADDoG that allows for more than one source dataset.
All models consider MFBs as the input feature set and valence
binned into a three dimensional vector as the output task. Each
experiment will consist of labelled data from a source dataset
(SRC) and data from a target dataset (TAR), some of which is
labelled and some is not. TAR contains the test data and is
available at train time without labels (transductive learning).
The baseline CNN method is able to take advantage of the la-
belled data from all datasets, but does not use unlabelled data.
Both ADDoG and MADDoG take advantage of the unlabelled
test data to generalize the intermediate feature representation
across datasets. In all methods, we use the Adam optimizer [52]
with the default parameters of learning rate (α = 0.0001) and
running average coefficients (β1 = 0.9,β2 = 0.999). All models
described below are implemented in PyTorch version 0.4.0 [53].

4.1 CNN

Convolutional Neural Networks (CNN) have seen much success
in speech emotion recognition [22], [23], [24]. Figure 2 shows
our CNN implementation. It consists of two main components:
(1) the feature encoder (convolutions + max pooling); (2) the
emotion classifier (fully connected layers + softmax).

It is difficult to validate multiple sets of hyperparameters
when conducting cross-dataset experiments, due to the lack of
labelled data in the target domain. For this reason, we select hy-
perparameters based on those found to be commonly selected
in prior work and keep them constant for all experiments.
A channel size of 128 is used for all convolutional and fully
connected layers, as commonly selected in prior work [24],
[54]. ReLU is used as the activation function for all but the
final layer, as it has been show successful in the field and
is computationally efficient [24], [55]. We select a relatively
large kernel size of 15 for the first convolutional layer, as
previous work has shown large initial layers to be beneficial
to emotion recognition using MFBs [23], [24]. We apply an
additional convolutional layer of length 5 dilated by a factor

Emotion Classifier

Feature Encoder

128

Global Max +
Dropout (0.2) 

FC+
ReLU FC+

Softmax 

M

L

H

Valence

T

40
T
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Input MFBs
15

128

128

FC+
ReLU 

128
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FC+
ReLU 

EM

Earth
Mover's 

128

FC+
ReLU 

128

FC

Fig. 3. Adversarial Discriminative Domain Generalization (ADDoG) Net-
work. Consists of three main parts: (1) the feature encoder; (2) emotion
classifier; (3) critic. The critic learns to estimate the earth mover’s
or Wasserstein distance between the SRC and TAR dataset encoded
feature representations. The emotion classifier ensures that valence is
also preserved in the generalized representation.

of 2 to further extend the receptive field of the network. The
global maximum is then taken over this convolution output,
resulting in an encoded representation of 128 for the entire
utterance. Previous work has shown that this is sufficient for
recognizing emotion over short utterances [23], [24]. Dropout
(p=0.2) is then applied to help prevent over-fitting. We next add
three fully connected layers, with the final having three outputs
for each of the valence bins, as in [48]. Finally, a softmax
layer is applied, allowing for the output to be viewed as the
probability distribution of valence. Biases are not used for any
layers. Coupled with the ReLU activation and max pooling, this
minimizes the effect of zero padding shorter utterances.

While older work in deep learning pretrained using au-
toencoders with unlabelled data, this has mostly subsided
with the introduction of the ReLU activation, dropout, better
initialization techniques, and larger datasets [56]. Because of
this, our CNN model does not use the unlabelled data, and
only the labelled data from both SRC and TAR is used during
training. Each epoch is divided into a total number of batches
equal to the amount of labelled data divided by the batch
size. After the MFBs are propagated through the network, we
calculate loss using a weighted cross entropy measure. The
classes are weighted so that all valence bins are given equal
likelihood, regardless of class imbalance.

4.2 ADDoG
We introduce Adversarial Discriminative Domain Generaliza-
tion (ADDoG), which addresses the open challenges of produc-
ing a generalized dataset representation using unlabelled target
data, while still being able to consistently converge. Similar to
CNN, it builds an intermediate 128-dimensional encoding of
the utterances after global max pooling and dropout. How-
ever, in the case of ADDoG, there is a critic component, as
in WGANs [15], that encourages the representations of the
different datasets to be as close as possible. Unlike ADDA
[19], the emotion classifier and database critic are iteratively
trained, ensuring the presence of emotion in the intermedi-
ate representation. We hypothesize that this creates a more
generalized representation of emotion that will perform better
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Algorithm 1 Train ADDoG for one epoch. We use the default
values of ncr i t i c = 5,c = 0.01,m = 32,α = 0.0001,β1 = 0.9,β2 =
0.999
Require: The number of critic iterations per genera-

tor/classifier iteration ncr i t i c , the critic clipping range c,
the batch size m, Adam hyperparameters α,β1,β2.

Require: Generator parameters φ, critic parameters ψ, emo-
tion classifier parameters θ.

Require: Emotion class weights for SRC Sw , emotion class
weights for labelled TAR Lw

1: n ← (Number of SRC samples) / m
2: for batch = 1, ...,n do
3: for t = 1, ...,ncr i t i c do
4: Sample {S(i )

X }m
i=1 a batch from SRC data

5: Sample {T (i )
X }m

i=1 a batch from TAR data
6: SR ←Gφ(SX ) . Encoded SRC
7: TR ←Gφ(TX ) . Encoded TAR
8: loss ← 1

m

∑m
i=1 Cψ(S(i )

R )− 1
m

∑m
i=1 Cψ(T (i )

R )
9: ψ←Adam(∆ψ[l oss],ψ,α,β1,β2)

10: ψ← clip(ψ,−c,c) . Clip critic weights
11: end for
12: Sample {S(i )

X ,S(i )
y }m

i=1 a batch from SRC data

13: Sample {T (i )
X }m

i=1 a batch from all TAR

14: Sample {L(i )
X ,L(i )

y }m
i=1 a batch from labelled TAR

15: SR ←Gφ(SX ) . Encoded SRC
16: TR ←Gφ(TX ) . Encoded TAR
17: LR ←Gφ(LX ) . Encoded labelled TAR
18: lossC ← 1

m

∑m
i=1 Cψ(T (i )

R )− 1
m

∑m
i=1 Cψ(S(i )

R )
19: lossE ←− 1

m

∑m
i=1 S(i )

y × l og (Eθ(S(i )
R ))×Sw

− 1
m

∑m
i=1 L(i )

y × log (Eθ(L(i )
R ))×Lw

20: φ←Adam(∆φ[l ossC + lossE ],φ,α,β1,β2)
21: θ←Adam(∆θ[l ossE ],θ,α,β1,β2)
22: end for

across datasets, compared with CNN. This is because the
representation will remove unrelated information that could
mislead the emotion classifier (environment noise, microphone
quality, subject demographics). Figure 3 shows the network
structure of ADDoG. It consists of three main components:
(1) the feature encoder (convolutions + max pooling); (2) the
emotion classifier (fully connected layers + softmax); (3) the
critic (fully connected layers + linear output).

The ADDoG hyperparameters are identical to those used
in CNN. The critic network follows the same structure and
hyperparameters as the emotion classifier. The only difference
is that the critic is a linear activation instead of a softmax layer
[15]. The training of the ADDoG network follows Algorithm 1
during each epoch. The number of training iterations per epoch
is equal to the number of utterances in SRC divided by the
batch size. Each iteration is divided into two main phases: (1)
training the critic; (2) training the feature encoder and emotion
classifier.

Training the critic: We freeze the weights in the feature
encoder and emotion classifier. First, unlabelled batches are
sampled from SRC and TAR. Next, the MFBs are passed through
the feature encoder to get the intermediate representations.
These intermediate representations are then passed to the
critic. We calculate the loss by subtracting the mean TAR output
from the mean SRC output. We use the Adam optimizer on the

critic weights with this loss to encourage TAR outputs to be as
large as possible and SRC outputs to be as small as possible,
estimating the Wasserstein, or earth mover’s, distance [15]. The
critic weights are then clipped to a range between -0.01 and
0.01, as in [15], to keep the outputs from growing infinitely. This
critic training process is repeated five times to fully converge
the critic before training the other systems, as in the original
WGAN paper.

Training the feature encoder and emotion classifier: We
freeze the critic weights. Next, we sample batches from SRC,
TAR, and the subset of TAR that is labelled (if any). We then
pass the MFBs through the entire network, getting outputs
from the emotion classifier and the critic. As in the CNN
training method, we calculate the emotion loss by weighted
cross entropy using the SRC and labelled TAR sets. We add an
additional term to the loss function for the critic that aims to
move the dataset representations closer to one another. This is
calculated by subtracting the mean SRC output from the mean
TAR output, inverting the Wasserstein distance.

This training procedure iteratively moves the two dataset
representations closer to one another, while following a clear
gradient at each step. In contrast, DANNs [20] attempt to make
a more generalized representation by “unlearning” domain.
Prior DANN experiments focused on static features using a
dense neural network structure. Additionally, previous work
noted issues with convergence [21]. Our experiments instead
use MFBs and a more complex CNN-based architecture. We
implemented DANN for our preliminary cross-corpus experi-
ments, but had issues getting convergence or meaningful out-
put, likely due to this increase in network complexity. ADDoG
gets around this by having a clearly defined target at each
step to "meet in the middle" and also utilizes the Wasserstein
distance instead of a traditional discriminator.

4.3 MADDoG

Multiclass Adversarial Discriminative Domain Generalization
(MADDoG) expands the ADDoG algorithm to accommodate
more than two datasets. The MADDoG network structure is
identical to ADDoG (Figure 3) except the critic has an out-
put for each dataset instead of a single output. This allows
for the method to learn a one-versus-rest classifier for each
dataset and account for the differences between all datasets
while learning the representation. In contrast, ADDoG requires
datasets to be divided into two groups (target and source) and
does not consider the differences within each group.

While the network structure of MADDoG is very similar to
ADDoG, the data sampling and loss weighting of the training
procedure needed to be substantially modified. The MADDoG
training procedure for each epoch is outlined in Algorithm 2.
The number of training iterations per epoch is equal to the
number of utterances in SRC and TAR divided by the batch size.
This is because data are drawn from all datasets simultaneously
when training the critic instead of each separately. As in
ADDoG, each iteration is divided into two main phases: (1)
training the critic; (2) training the feature encoder and emotion
classifier.

Training the critic: Training the critic is similar to ADDoG
and begins with freezing the weights in the feature encoder
and emotion classifier. One unlabelled batch is sampled from
the combined SRC and TAR sets. The MFBs are then passed
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Algorithm 2 Train MADDoG for one epoch. We use the default
values of ncr i t i c = 5,c = 0.01,m = 32,α = 0.0001,β1 = 0.9,β2 =
0.999,λ= 0.1
Require: The number of critic iterations per genera-

tor/classifier iteration ncr i t i c , the critic clipping range c, the
batch size m, Adam hyperparameters α,β1,β2, the dataset
generalization parameter λ.

Require: Generator parameters φ, critic parameters ψ, emo-
tion classifier parameters θ.

Require: Emotion class weights for SRC Sw , emotion class
weights for labelled TAR Lw , dataset one-versus-all weights
DSw

1: n ← (Number of SRC and TAR samples) / m
2: for batch = 1, ...,n do
3: for t = 1, ...,ncr i t i c do
4: Sample {X (i ),d s(i )}m

i=1 a batch from all data
5: R ←Gφ(X ) . Encoded data
6: D ←Cψ(R) . Get the 3 outputs of critic
7: D (:,d s) ← D (:,d s) ×−DS(d s)

w

8: loss ← 1
m

1
3

∑m
i=1

∑3
j=1 D (i , j )

9: ψ←Adam(∆ψ[l oss],ψ,α,β1,β2)
10: ψ← clip(ψ,−c,c) . Clip critic weights
11: end for
12: Sample {S(i )

X ,S(i )
y ,S(i )

d s }m
i=1 a batch from SRC data

13: Sample {T (i )
X ,T (i )

d s }m
i=1 a batch from all TAR

14: Sample {L(i )
X ,L(i )

y }m
i=1 a batch from labelled TAR

15: SR ←Gφ(SX ) . Encoded SRC
16: TR ←Gφ(TX ) . Encoded TAR
17: LR ←Gφ(LX ) . Encoded labelled TAR
18: lossC ← 1

m

∑m
i=1 Cψ(T (i )

R )×T (i )
d s

+ 1
m

∑m
i=1 Cψ(S(i )

R )×S(i )
d s

19: lossE ←− 1
m

∑m
i=1 S(i )

y × l og (Eθ(S(i )
R ))×Sw

− 1
m

∑m
i=1 L(i )

y × log (Eθ(L(i )
R ))×Lw

20: φ←Adam(∆φ[λ× lossC + lossE ],φ,α,β1,β2)
21: θ←Adam(∆θ[l ossE ],θ,α,β1,β2)
22: end for

through the network to get the critic outputs, which are then
modified as follows:

1) We calculate the proportion of each dataset versus the
occurrence of all other datasets.

2) For each utterance in the batch, we flip the critic
output corresponding to its dataset and multiply it by
the previously calculated one-versus-all weight.

This makes each critic output a one-versus-all dataset critic and
weights each of them so that samples from inside and outside
the dataset are given equal total weight. The critic loss is
calculated as the mean of the critic outputs, causing all of them
to trend smaller. However, because the within dataset output is
flipped, it is encouraged to be larger. The critic loss estimates
the one-versus-all Wasserstein distance for each dataset. As in
ADDoG, the critic weights are clipped between -0.01 and 0.01
and the whole process is repeated five times.

Training the feature encoder and emotion classifier: The
critic weights are first frozen. We then sample batches from
SRC, TAR, and the subset of TAR that is labelled (if any). The
MFBs are passed through the network, providing the emotion
classifier and critic outputs. We calculate the emotion loss as
before, using weighted cross entropy over the SRC and labelled

TAR sets. For each utterance, the contribution to the critic loss
is the critic output from the same dataset as the utterance
(ignoring the other outputs). This encourages the one-versus-
all Wasserstein distance to be reduced and the dataset to
start looking like the others. Because this results in a more
complex learning procedure than before, in practice we need
to provide a weighting parameter λ=0.1 (found in preliminary
experiments) to allow for the representation to converge. The
total loss is the emotion loss added to the critic loss times λ.

The novelty of the MADDoG method is its ability to incor-
porate multiple datasets into its generalization procedure while
still maintaining a clearly defined target (the other datasets)
at each step. This creates cross-dataset representations that
become more similar as the system is trained and that continue
to encode the emotion information in the signal. As long as a
sufficiently small learning rate is used, the intermediate dataset
representations should converge somewhere in the middle. If
instead, SRC datasets were considered as a group, the training
procedure would not do anything to generalize between the
SRC datasets. MADDoG considers these differences to enforce
a more generalized representation that allows for better cross-
corpus performance.

5 EXPERIMENTAL DESIGN

We design four sets of experiments to examine different types
of cross-dataset emotion classification. Each experiment exam-
ines the effect of the inclusion or absence of labelled data
in the target dataset. The final two experiments focus on
incorporating both laboratory and in-the-wild datasets.

All experiments begin by dividing the data into three folds:
train, validation, and test. We run each experiment for 30
epochs, recording validation performance and test set predic-
tions at each step. In this paper, we use Unweighted Average
Recall (UAR) as the performance metric. This ensures that each
valence class is given equal weight, despite possible imbalance,
and results in a chance performance of 0.33 UAR. Once an
experiment is complete, we record test predictions from the
highest validation epoch to prevent overfitting and calculate
the UAR for each test subject. Each experiment is repeated
a total ten times (fifty times for Experiment 1, Section 5.1),
resulting in a final performance matrix of size (Number of
Repeats × Number of Subjects). Folds are kept consistent
between different methods so that these performance matrices
can be compared. These experiments were split between two
machines with GPUs - one with four GeForce GTX 1080s and
another with one GeForce GTX 1080 and two Titan X’s.

5.1 Experiment 1: Cross-Dataset
We determine the effect of training and testing on different
datasets when labelled data is unavailable in the target dataset.
Additionally, we constrain this initial experiment to only con-
sider data from similar environments - using IEMOCAP and
MSP-Improv, which were both recorded in a laboratory. We
form the train and validation sets by splitting the SRC data
randomly on a 80:20 split, respectively. In this experiment,
we compare the effectiveness of a CNN versus ADDoG, which
uses the unlabelled test data in the training process to learn
a more generalized representation for emotion. We run each
experiment for 50 total repeats, so that we get enough per-
epoch data to perform a convergence analysis.
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Fig. 4. Folds used for Experiments 2, 3, and 4 when 200 labelled TAR
are available. The SRC set is always used as part of the train set. The
TAR set is split in half - part for testing and part for randomly sampling
the 200 labelled TAR. The TAR data not selected in Fold 2 is discarded.
After getting test predictions, the TAR folds are swapped and the process
is repeated.

5.2 Experiment 2: Increasing Target Labels

The next experiment augments the training data with varying
amounts of labelled examples from TAR. This experiment con-
tinues focusing on the laboratory recorded datasets IEMOCAP
and MSP-improv. We train the network with 0, 200, 400, 800,
1,600, and 3,200 labelled TAR utterances, in addition to the
labelled SRC utterances and unlabelled test utterances.

We follow the fold scheme shown in Figure 4 to get test
predictions for all utterances in TAR. The number of SRC
utterances and test utterances is kept constant through all
experiments. SRC utterances are only used in the train set,
unless no labelled TAR data is available. In that case, the SRC
data follows a random 80:20 split between train and validation,
as in Experiment 1. We split the TAR data randomly in half to
allow for some labelled data for training, while reserving the
other half for testing. If labelled data is used for an experiment,
these samples are drawn from one of the halves and split 80:20
between the train and validation sets. Figure 4 depicts the case
of having 200 labelled TAR utterances, resulting in a validation
set of 40 labelled TAR and a train set including 160 labelled
TAR and all of SRC. The remaining TAR data in the fold is
discarded so the amount of unlabelled data is kept constant.
This procedure results in test predictions for half of TAR. The
TAR folds are then swapped, a new model is trained, and test
predictions on the other half are output. Finally, we calculate
the UARs for each subject in TAR using the concatenated
predictions.

ADDoG is able to use the unlabelled test data along with
the labelled SRC and TAR data during training for learning a
more generalized dataset representation. The baseline CNN
method is provided labelled data from both SRC and TAR
when available. We also introduce another baseline method
that specializes (SP) on the available labelled target data. SP
uses the same network and training procedure as CNN, but
only uses labelled TAR. Because of this, it is unable to be trained
when 0 labelled TAR utterances are provided. We run this an all
other experiments using 10 total repeats.

TABLE 2
Experiment 1: Cross-Dataset Results

MSP-Improv to IEMOCAP IEMOCAP to MSP-Improv
CNN 0.439±0.022 UAR 0.432±0.012 UAR

ADDoG 0.474±0.009* UAR 0.444±0.007* UAR

5.3 Experiment 3: To In-the-Wild Data
We next examine the effect of training on a laboratory recorded
dataset (IEMOCAP and/or MSP-Improv) and testing on emo-
tion in-the-wild (PRIORI Emotion). We expect this experiment
to be more difficult than the previous two, due to the difference
in recording environment (combining lab and cellphone call),
recording quality (previously 16 kHz, now 8 kHz), and elic-
itation strategy (combining acted and natural conversation).
We examine the effect of training on IEMOCAP or MSP-Improv
alone, as well as training on them together. Each test follows the
same procedure as Experiment 2, using the folds seen in Figure
4. We again compare the CNN, SP, and ADDoG methods. The
experiment combining IEMOCAP and MSP-Improv training
data also employs the MADDoG method to take advantage of
all three datasets.

5.4 Experiment 4: From In-the-Wild Data
Our final experiment examines the reverse of Experiment 3 -
training on in-the-wild data (PRIORI Emotion) and testing on
laboratory recorded emotion (IEMOCAP or MSP-Improv). The
experiment follows the same strategy as Experiment 2, using
the fold scheme seen in Figure 4. We use the CNN, SP, and
ADDoG models. Unlike Experiment 3, MADDoG is not used, as
PRIORI Emotion is the only dataset used for training.

6 RESULTS

In all of the presented UARs, errors are calculated by first taking
the mean subject UAR within each repeat of an experiment.
The reported errors are the standard deviation of these means
across all repeats, showing the stability of the findings. Mat-
plotlib [57] was used to generate all result plots with the error
shown as shaded error bands. Significance is determined using
an analysis of variance in R [58] over the matrix of subject UARs
output by the compared methods, as explained in Section 5.
Significant results in each experiment are indicated by dots on
the plots and/or bolded and starred values in the tables.

6.1 Experiment 1: Cross-Dataset
Table 2 shows the results of using IEMOCAP as SRC and
MSP-Improv as TAR, as well as the reverse experiment. Two
different methods are compared, including the CNN, which
is trained only using the SRC data, and ADDoG, which is
additionally trained using the unlabelled TAR data, creating
a more generalized intermediate representation. We find that
ADDoG significantly outperforms CNN in both cases, implying
that a more generalized representation can be used to improve
cross-corpus testing without added labelled data.

In addition, we note that the standard deviation across
experiment repeats is much lower for ADDoG versus CNN. This
can also be seen in the convergence of results, as seen in Figure
5. Figure 5a in particular shows ADDA with a much smaller
error at each epoch, compared with CNN. This is especially
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Fig. 5. The test set mean subject UAR at different epochs when training on one dataset and testing on another. In particular, Figure 5a demonstrates
how ADDoG reduces the variance of the output, improving cross-corpus testing, regardless of the mismatched validation set.
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Fig. 6. Results of training on either IEMOCAP or MSP-Improv and testing on the other with increasing amounts of labels from the target dataset.
Dots indicate methods significantly different from ADDoG using an analysis of variance in R (p=0.05).

important for cross-corpus testing where labelled data is not
available in the target dataset for validation. Using SRC data for
validation is necessary in these experiments, but can still be
unreliable, due to the mismatch. This may be less of a problem
for ADDoG because of the results stability, contributing to the
overall better performance.

6.2 Experiment 2: Increasing Target Labels
Figure 6 shows the results for Experiment 2, when we begin to
incorporate labelled TAR data into the training and validation
methodology. The left most point on both plots is the case
when only unlabelled TAR data is available. This is slightly dif-
ferent than Experiment 1, as only half the amount of unlabelled
data is available due to the fold structure shown in Figure 4.
We find that ADDoG significantly improves on the baseline
method in all cases, although the margin of improvement
decreases with larger amounts of labelled target data. This
may indicate that generalizing the representation may have
diminishing returns once there is sufficient labelled data in
the target domain. However, coupling even a small amount of
labelled data and ADDoG results in significant improvement
over baseline methods.

Adding labelled data to the ADDoG method increases its
performance in all but one case - training on MSP-Improv

and testing on IEMOCAP with only 200 labelled IEMOCAP
utterances. While still significantly better than CNN and SP
with the same amount of labelled data, better performance
is actually attained using ADDoG without labelled IEMOCAP
data. This could be due to the relatively small validation set,
only consisting of 20% of the labelled data, or 40 utterances.
This may not provide a reliable enough estimate of test perfor-
mance, resulting in the larger error band around the result. It
may be better to instead incorporate some additional SRC data
in validation when very small amounts of TAR data are only
available.

We also find that the SP method begins to outperform the
CNN method when training on IEMOCAP and testing on MSP-
Improv once a large amount of MSP-Improv labelled data is
included. This may imply that appending SRC data to TAR data
only complicates the training when not considering the effect
of dataset. This is even more apparent when considering very
different datasets, as seen in the next section.

6.3 Experiment 3: To In-the-Wild Data

The results of Experiment 3 are shown Figure 7. Experiment 3
considers the effect of training on a laboratory recorded data
(IEMOCAP and/or MSP-Improv) and testing on an in-the-wild
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Fig. 7. Results of training on IEMOCAP and/or MSP-Improv and testing on PRIORI Emotion with increasing amounts of labels from PRIORI Emotion.
Dots indicate methods significantly different from ADDoG in (a) and (b) and MADDoG in (c) using an analysis of variance in R (p=0.05).

set (PRIORI Emotion). Because all experiments use the same
test set, the y-axis (UAR) range is kept constant. The SP results
are the same between all figures, as it does not rely on the SRC
data.

The first two figures 7a and 7b examine the case where
just one laboratory dataset is used to train the model. We
find much lower performance than prior experiments, due to
the mismatch in recording conditions and elicitation strategy
(acted versus a natural phone conversation). Combining SRC
and TAR data together with the CNN method entirely fails, with
the results consistently being the worst, due to the extreme
mismatch. However, ADDoG is still able to provide a significant
improvement in performance when none or a small amount
(800 or fewer) of labelled TAR utterances are available. For these
experiments with smaller labelled TAR data, the advantage
of using ADDoG is approximately similar to that attained by
doubling the amount of labelled TAR data. However, this trend
is broken with larger amount of labelled TAR data where AD-
DoG no longer performs better and is in one case significantly
worse (IEMOCAP to PRIORI, 3200 labelled samples). Due to
the mismatch in dataset, it is better to specialize a model
to the dataset characteristics, instead of generalizing, once a
certain critical mass is attained. Both CNN and ADDoG perform
slightly better when trained with MSP-Improv data, implying
that it may be the more similar of the two datasets to PRIORI
Emotion. This could potentially be due to the included more
natural speech in the MSP-Improv dataset recorded in between

scenarios.
Figure 7c shows the results for the last case where IEMOCAP

and MSP-Improv are both simultaneously considered as SRC
datasets. Despite the added data, the CNN method is unable
to perform better than with just MSP-Improv data, implying
that the additional dataset is just confusing the classifier. The
ADDoG classifier is able to take advantage of the additional
data to at least perform the same as, if not better than, the
MSP-Improv ADDoG method. While the method is not hurt
by the addition of IEMOCAP, in most cases it does not help.
However, MADDoG performs better than all methods using
labelled data (significantly in all cases but ADDoG with 200
samples). This is likely due to the fact that it is able to effectively
integrate together information from all datasets and come up
with an even more generalized representation. ADDoG still
seems to perform significantly better in the case where there
is no labelled TAR data. Perhaps the labels from the other two
datasets dominate the representation when none are available
for MADDoG.

6.4 Experiment 4: From In-the-Wild Data
Because of our success in generalizing a representation across
laboratory and in-the-wild datasets, we were interested in
cross-corpus testing in the reverse direction. Figure 8 shows the
results when training on PRIORI Emotion and testing on either
IEMOCAP or MSP-Improv. In these experiments we just use the
CNN, SP, and ADDoG methods, as there is only one SRC dataset
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Fig. 8. Results of training on PRIORI Emotion and testing on another dataset with increasing amounts of labels from the target dataset. Dots indicate
methods significantly different from ADDoG using an analysis of variance in R (p=0.05).

included, making MADDoG unnecessary. Our results again
show that the CNN method performs the worst, demonstrating
that appending together datasets does not work effectively
when the datasets are too different. ADDoG also behaves
similarly to Experiment 3 with significant improvements in
most cases without labelled data or small amounts of labelled
data. SP has similar or better performance than ADDoG once a
substantial amount of labelled TAR data is available, implying
that a method that trades off between generalization and
specialization may instead be needed in these cases.

7 DISCUSSION AND CONCLUSION

In this paper, we investigate methods of controlling for the
unwanted factors of variation when conducting cross-corpus
experiments. These factors can include environmental noise,
recording device differences, elicitation strategies (acted versus
natural), and subject demographics. In cross-corpus speech
emotion recognition, these factors can distract from the under-
lying emotion and decrease performance, especially because of
the often smaller dataset sizes.

We introduce two new methods, ADDoG and MADDoG,
which aim to generalize the representation of speech emotion
across datasets. Both methods iteratively move their dataset
representations closer to one another and have a clearly de-
fined target at each step, following a "meet in the middle"
approach. Experiments 1 and 2 focus on more traditional
laboratory datasets to introduce the models and explore con-
vergence. Experiments 3 and 4 take advantage of the PRIORI
Emotion dataset to examine the effect of training with in-
the-wild data. Experiment 3 also explores training with three
simultaneous datasets using the MADDoG method.

Our results indicate that ADDoG is able to consistently con-
verge and produce a more generalized representation across
datasets, even when no labelled target data is available. Sig-
nificant improvement is found with no added labelled data in
all four experiments, regardless of the number of datasets or
whether they are laboratory or in-the-wild recordings. While
the "unlearning" approach, seen with DANNs [20], [21], can
sometimes work to improve generalization, it suffers from
convergence issues especially when more complex network

structures are used. Our results reinforce the idea that the
"meeting in the middle" approach of ADDoG can reach a
generalized emotion representation consistently by following
a more straightforward training paradigm.

This generalized representation not only improves perfor-
mance, but also decreases variance over different repeats of
the experiment with different data. Because of this stability, less
emphasis needs to be placed on validation. This is particularly
important, since the validation and test sets are mismatched
when conducting cross-corpus experiments.

Further experiments demonstrate how to effectively use
small amounts of target labelled data when available. Simply
combining the labelled data together from both datasets per-
forms reasonably well when the recording conditions closely
match, such as those in the two laboratory datasets - IEMOCAP
and MSP-Improv. However, this method fails when substantially
different data is introduced, such as PRIORI Emotion, demon-
strated by the low CNN results in Experiments 3 and 4. ADDoG
takes a more elegant approach to combining these datasets by
building a generalized model and ensuring the representation
is valid for the provided TAR data. Additionally, for the case
of more than two datasets, MADDoG is able to recognize the
differentiating factors in all SRC and take advantage of them.
While ADDoG and MADDoG are significantly the best methods
in most cases, SP performs comparably or better when enough
TAR labels are available and TAR and SRC are very different.
This indicates that generalized models can only go so far and it
is important to understand when a domain is so different that
a specialized model may be needed.

Future experiments will explore other factors of speech
variation besides dataset - including gender, phoneme, subject,
and recording device. ADDoG and MADDoG should be able
to be used to find a representation for emotion that is more
consistent across these factors. For example, while conducting
traditional leave-one-subject-out speech emotion testing, it
would be possible to consider the training subjects as SRC and
the test subject as TAR. We hypothesize that in this case it
would be preferred to find a more generalized representation
of emotion that removes the contribution of subject charac-
teristics. Similarly, we could use the technique to reduce the
impact of recordings taken over multiple devices, previously
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shown to reduce mood classification performance [5].
Additionally, we are interested in exploring the trade-off

between building systems specialized for certain domains ver-
sus building generalized representations. Once enough labelled
data is available in a target domain, it is often better to just
specialize with it instead of using information from other
domains, as seen in Section 6.3. Because of this, it is important
to formulate exactly when to generalize and when to specialize.
We plan on investigating a method that fuses both approaches
and estimates which is better, based on the amount and
similarity of data in the source and target domains.

Finally, we plan to use the techniques explored in this paper
to facilitate the estimation of mood in-the-wild. As explained
in Section 3.3, the PRIORI Emotion dataset is part of the
larger PRIORI dataset, which captures the everyday speech
of individuals with bipolar disorder. We aim to use predicted
emotion as a mid-level feature for mood estimation, as first
explored in [41]. By employing the techniques of ADDoG and
MADDoG, we will bring together multiple emotion and mood
datasets to build a model capable of working effectively in-the-
wild.
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