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Abstract
Suicide is a serious public health concern in the U.S., taking the
lives of over 47,000 people in 2017. Early detection of suicidal
ideation is key to prevention. One promising approach to symp-
tom monitoring is suicidal speech prediction, as speech can be
passively collected and may indicate changes in risk. However,
directly identifying suicidal speech is difficult, as characteris-
tics of speech can vary rapidly compared with suicidal thoughts.
Suicidal ideation is also associated with emotion dysregulation.
Therefore, in this work, we focus on the detection of emotion
from speech and its relation to suicide. We introduce the Eco-
logical Measurement of Affect, Speech, and Suicide (EMASS)
dataset, which contains phone call recordings of individuals re-
cently discharged from the hospital following admission for sui-
cidal ideation or behavior, along with controls. Participants self-
report their emotion periodically throughout the study. How-
ever, the dataset is relatively small and has uncertain labels. Be-
cause of this, we find that most features traditionally used for
emotion classification fail. We demonstrate how outside emo-
tion datasets can be used to generate more relevant features,
making this analysis possible. Finally, we use emotion predic-
tions to differentiate healthy controls from those with suicidal
ideation, providing evidence for suicidal speech detection using
emotion.
Index Terms: emotion recognition, suicidal speech, small data,
uncertainty, neural networks

1. Introduction
Suicide is an increasingly serious public health issue, with the
suicide rate increasing from 10.46 to 14.48 deaths per 100,000
between 1999 and 2017 [1]. A recent meta-analysis suggests
that our ability to predict suicide is only slightly above chance
levels, and has not improved over the past 50 years [2]. Early
detection of suicidal ideation is crucial for prevention and inter-
vention. However, relying on self-report of suicide risk is prob-
lematic, as the majority of patients deny suicidal ideation and
intent in their last communication before their death by suicide
[3, 4]. This points to the need for additional, objective monitor-
ing strategies to better know when to intervene. Prior research
has shown that individuals experiencing suicidal thoughts man-
ifest changes in their speech [5]. This presents an opportunity
for effective monitoring, as speech can be easily collected and
relates to an individual’s underlying condition.

Most previous work into automatically detecting suicidal or
depressed speech has focused on laboratory collected datasets
[5, 6, 7, 8]. However, these datasets are not necessarily rep-
resentative of the variations in environment and mood present

under real world conditions. Furthermore, characteristics of
speech change at the sub-second scale, while thoughts of sui-
cide can be longer in duration [9] and vary considerably [10].

Suicidal ideation is also related to the manner in which
emotion is expressed and prior work has examined this link
[11, 12]. Self-reports of momentary suicidal ideation have been
strongly associated with negative affect among psychiatric inpa-
tients [13]. By first detecting emotional variations from speech,
it may be possible to use emotion as a predictor of suicide. This
still requires emotion detection of real world speech, which is
a difficult task due to the confounding factors of environment,
noise, and subject differences. Furthermore, due to the sensitive
nature of suicidal data, there are no publicly available datasets
linking naturally recorded speech, emotion, and suicide.

In this paper, we present the Ecological Measurement of
Affect, Speech, and Suicide (EMASS) Dataset. It contains
recordings of natural phone conversations, as well as regular
self-reports of emotion, mood, and suicidal thoughts using eco-
logical momentary assessment (EMA) methods [14]. The par-
ticipants include individuals with recent suicidal ideation or be-
havior, as well as psychiatric and clinical controls. The col-
lection is ongoing, and the dataset is still relatively small. We
demonstrate how outside data can be used to generate emotion-
ally salient features. We then train a model to accurately predict
a set of emotion measures, despite restrictive real-world condi-
tions and small amounts of data. These measures were found to
be indicative of suicidal ideation in prior work [13]. Finally, we
show how emotion predicted from speech can be used to sep-
arate healthy controls from those with recent suicidal ideation.
This system could eventually allow for the detection of the onset
of suicidal ideation, making early intervention possible.

2. The EMASS Dataset
The Ecological Measurement of Affect, Speech, and Suicide
(EMASS) Dataset is a collection of natural smartphone speech
and momentary self-ratings. The collection is ongoing, and the
current snapshot includes 43 individuals, each enrolled for eight
weeks. Participants were divided into four groups - healthy con-
trols (HC), psychiatric controls (PC), and individuals that have
experienced recent suicidal ideation (SI) or suicide attempts
(SA). Individuals in the SI and SA groups were admitted to the
hospital for thoughts or behavior related to suicide. Individuals
in the PC group were admitted to the hospital for reasons other
than suicide (e.g., substance use). All groups, with the excep-
tion of HC, were enrolled in the study during their psychiatric
admission. Immediately following discharge, they were given a
smartphone with the PRIORI app, which securely records their
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Table 1: The amounts of data from different groups of subjects,
including healthy controls (HC), psychiatric controls (PC), and
individuals hospitalized for suicidal ideation (SI) and attempts
(SA). Subjects must contain at least five calls to be included.

(a) The full dataset without associating calls with surveys.

All HC PC SI SA

Subjects 43 19 7 12 4
Calls 4078 1780 761 1208 295
Hours 402 239 51 93 15

(b) Only those calls occurring within one hour before a survey.

All HC PC SI SA

Subjects 16 13 0 3 0
Calls 216 201 0 15 0
Hours 25 23 0 2 0

end of phone conversations [15]. These recordings are then en-
crypted and uploaded to our server for automatic analysis. Table
1a shows the number of calls collected for each subject group,
for a total of 4,078 calls over 402 hours.

In addition to PRIORI, the mEMA app by ilumivu was in-
stalled on the smartphone, which presented participants with
three surveys throughout the day at random times. They
were also asked to initiate surveys if they experienced suici-
dal ideation or behavior. In these surveys, participants were
asked to report on their current affect, using items from the
Positive and Negative Affect Schedule (PANAS-X) [16]. Af-
fect was rated on a five point Likert Scale for 11 different cate-
gories, which are divided into three groups, based on previous
work [13]. The three groups are: (1) Positive Emotion - Con-
fident, Excited, Happy; (2) Negative Emotion - Sad, Guilty,
Worried, Shame, Hopeless; (3) Anger/Irritability - Anger at
Others, Anger at Self, and Irritable. There are 3,359 surveys
included in the dataset snapshot used for this study.

We associate phone call recordings with surveys to enable
automatic prediction. Our initial experiments concluded that
calls occurring after surveys were less related to the rated emo-
tions than calls occurring before surveys. As such, call record-
ings are labelled with the emotion present in the closest follow-
ing survey. Furthermore, we hypothesize the more time that
separates a call and a survey, the weaker the certainty in the
rated emotion. Because of this, we examine the impact of cut-
ting off the training and testing data at different hours of sep-
aration. Survey separation is measured from the start of a call
to the survey response. Figure 1 displays the number of calls
present at different cutoffs ranging from one hour to two days.

We require at least five calls to be within the cutoff for a
subject to be included in experiments (not necessarily from five
unique surveys). Table 1b gives the amount of data available
for a one hour cutoff. While this severely reduces the data, it
increases our certainty in the results. As such, we focus analysis
on these 16 subjects and 216 calls from the HC and SI groups.

3. Features
Due to the relatively small dataset, we focus on three knowledge
based, feature sets - eGeMAPS, Rhythm Statistics, and Emotion
Statistics. eGeMAPS is a state-of-the-art emotion recognition
feature set [17] and Rhythm Statistics have been used effec-
tively in prior work in mood recognition [18]. We compare the
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Figure 1: Cumulative histogram of the hours from calls to the
following survey. There are a total of 239 calls with a survey
within one hour afterwards (216 from subjects with at least five).

efficacy of these features with Emotion Statistics - features gen-
erated by a deep learning system trained on existing emotion
corpora. Our hypothesis is that Emotion Statistics will outper-
form the other two, due to the small amount of data available
for training emotion recognition in the EMASS corpus.

All call recordings are segmented using the ComboSAD
algorithm, introduced in [19] and adapted for contiguous seg-
ments in [20]. The algorithm estimates the presence of speech
using six signals - harmonicity, clarity, prediction gain, peri-
odicity, perceptual spectral flux, and energy. These are then
combined using principle component analysis (PCA) and then
grouped into segments ranging from 2-30 seconds. All calls
must at least contain at least three speech segments to ensure
enough data for accurate feature extraction.

3.1. eGeMAPS

The eGeMAPS feature set was introduced in [17] and is ex-
tracted using OpenSMILE [21]. Low level descriptors (LLDs)
are extracted for frequency, energy, amplitude, and spectral pa-
rameters in each segment and result in 23 values per frame.

3.2. Rhythm Statistics

Segments are subdivided into two second subsegments using a
sliding window with a one second step size. Seven-dimensional
representations of rhythm are then extracted for each subseg-
ment, following the work by Tilsen and Arvaniti [18].

3.3. Emotion Statistics

We extract segment-level emotion using our previously trained
Multiclass Adversarial Discriminative Domain Generalization
(MADDoG), introduced in [22]. This allows us to use outside
data to generate a set of features indicative of emotion fluctua-
tions. The MADDoG model is trained to recognize dimensional
emotion (either activation or valence) and consists of three main
parts. The Feature Encoder uses 40 dimensional log Mel Fil-
ter Banks (MFBs), extracted using the Kaldi speech recognition
toolkit [23] (frame length of 25 ms, frame shift of 10 ms). It
consists of a convolutional neural network (CNN) followed by
pooling to produce a segment-level representation. The Emo-
tion Classifier is a dense neural network (DNN) trained to rec-
ognize three bins of dimensional emotion (low, mid, or high
activation/valence) using the segment-level representation. The
Critic is a DNN that is adversarially trained to ensure that the
segment-level representation is similar across different datasets.
The critic has a separate output for each training dataset.

Training alternates between two steps: (1) Freeze all
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Table 2: The results for each feature set on calls within one hour
before surveys. AUCs are averaged across iterations, subjects,
emotions. The best hour cutoff is determined for each feature
set. The AUC error is the standard deviation across subjects.

Features Best Cutoff Hr. AUC

eGeMAPS 8 0.53 ± 0.12
Rhythm Statistics 16 0.54 ± 0.09
Emotion Statistics 24 0.63 ± 0.10

weights besides the Critic and estimate the Wasserstein Dis-
tance [24] between datasets; (2) Freeze the Critic and train the
remainder of the model to recognize emotion, while also min-
imizing the Critic’s estimate of the Wasserstein Distance. This
causes the segment-level representations for each dataset to it-
eratively get closer to one another, eventually “meeting in the
middle”. This has the intended effect of learning emotion in a
more generalized manner so that the model can be used across
yet unseen datasets. For more information, please refer to [22].

This training method allows us to leverage emotional
speech from three other datasets - IEMOCAP [25], MSP-
Improv [26], and PRIORI Emotion [27]. We then train two
separate MADDoG models for activation and valence using the
three combined datasets. Segments from the EMASS dataset
are then input to the models, resulting in three bins of emotion
for both activation and valence, or six values per segment.

3.4. Call-Level Statistics

We apply 31 statistics across the concatenated segments to pro-
duce call-level features, as in [20]. These include the mean,
standard deviation, skewness, kurtosis, minimum, maximum,
and range of the signal. We perform linear regression on the
signal and use the fit parameters and error as statistics. We then
extract the various percentiles and percentile differences and
calculate the percentage of the signal above different thresholds.

4. Emotion Modeling
We compare all three feature sets using a DNN, trained to clas-
sify one of the 11 emotion measures in the EMASS dataset. The
selected target emotion for each experiment is converted from a
five point Likert Scale to a fuzzy binary scale for classification.
The purpose of this scheme is to eventually allow for our system
to distinguish between baseline and atypical emotion. The emo-
tion baseline is estimated with the median subject rating, which
produces a baseline of 1, 2, or 3 for each of 11 emotions. Each
emotion scale is binarized with a fuzzy value of 0.5 between
baseline and atypical values, as follows:

• Baseline of 1 or 3: 1 → 0.0 2 → 0.5 (3,4,5) → 1.0
• Baseline of 2: (1,2) → 0.0 3 → 0.5 (4,5) → 1.0
Each experiment begins by randomly dividing the subjects

into five sets for cross validation. One of the sets is reserved
for testing, ensuring a subject-independent analysis. Each of
the remaining subjects has their data randomly divided between
training and validation, with 1/5 of their data used for valida-
tion. This process is repeated 100 times for each subject, re-
sulting in 100 splits. We calculate the standard deviation of the
target emotion within the two folds and use the split that maxi-
mizes their product. This ensures enough emotion variability in
each fold. We found that applying Z-normalization was bene-
ficial only for the eGeMAPS feature set and normalize it based
on train data. All experiments are repeated a total of 100 times
with different fold assignments to achieve more stable results.
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Figure 2: Mean AUC over all emotions, subjects, and iterations
using emotion statistic features at different cutoffs. The error
bands show the standard deviation between iterations. The ta-
ble displays the amount of data at each cutoff.

We use a DNN for classification with four hidden layers
(widths of 1024, 512, 256, and 256) using a RReLU activation
function, found to work best in [28]. The output layer employs
a sigmoid activation function and is trained with binary cross
entropy loss. This loss is weighted by the inverse of the count of
each emotion value (0.0, 0.5, 1.0) in the training set. The Adam
optimizer [29] is used with a learning rate of 0.0001 and default
parameters. This DNN was found to outperform random forest
and support vector machines (SVMs) in early experiments and
is the focus of this paper. Training is performed over ten epochs
with batches selected to contain all of one subject’s data. This
ensures the model focuses on learning within-subject variations
versus cross-subject biases. We determine the stopping epoch
by maximizing Pearson’s correlation of the actual emotion and
predictions across all data in the validation set.

The test predictions are then estimated using the held-out
subjects and selected model. For each test subject, we calcu-
late an Area Under the Receiver Operating Characteristic Curve
(AUC) as our performance measure. AUC represents the ability
of a system to correctly rank pairs of instances and has a chance
rating of 0.5 and ideal rating of 1. Subjects must have at least
one negative instance (0.0) and one positive instance (1.0) to be
able to calculate a valid AUC. Instances with the fuzzy value
of 0.5 are not used to calculate test AUC. Because of this, each
emotion experiment will have a different set of test subjects that
have enough data for AUC calculation (see Table 3).

5. Results
In this section, we explore speech emotion classification using
different feature sets, survey cutoffs, and emotion measures.

We first examine the effect of feature set choice and focus
on only testing with calls within one hour of a survey. We em-
ploy varying amounts of data in the training set and allow for a
cutoff of 1, 2, 4, 8, 16, 24, 36, or 48 hours. Table 2 gives the
performance of each feature set averaged across all subjects,
emotions, and iterations using its best performing training cut-
off. We find that the Emotion Statistics perform substantially
better than the others, which are close to chance. This is likely
due to the Emotion Statistics already containing estimates of
emotion at the segment level. This allows the model to over-
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Table 3: Results on emotion measures using emotion statistic
features with a 24 hour cutoff. Only calls with a survey within
one hour afterwards are used in testing. The amount of subjects
and non-fuzzy calls available to calculate AUCs are shown.

Emotion Subjects Calls AUC

Confident 7 66 0.64 ± 0.19
Excited 7 92 0.51 ± 0.19
Happy 7 87 0.63 ± 0.21

Sad 6 65 0.54 ± 0.08
Guilty 4 59 0.66 ± 0.25
Worried 4 50 0.62 ± 0.23
Shame 3 45 0.57 ± 0.12
Hopeless 2 21 0.72 ± 0.04

Anger at Others 8 89 0.78 ± 0.16
Anger at Self 5 65 0.60 ± 0.23
Irritable 3 24 0.69 ± 0.34

come the lack of data, which makes classification difficult for
other feature sets. Because of this, the following analyses only
focus on the Emotion Statistics feature set.

Figure 2 shows our analysis of performance at different
training set cutoffs, averaged over subjects, iterations, and emo-
tion measures. While a larger cutoff allows for more training
calls, it lowers the certainty in training labels. However, be-
cause subjects usually participate in three surveys per day, the
median separation between calls and surveys is still only 4.03
hours even with a 48 hour cutoff. There are diminishing returns
for the amount of added data with each increase in cutoff (Fig-
ure 1). When testing on the newly added data at each increase
in cutoff, we find decreased performance. However, if we only
test on the 216 calls within one hour of a survey, we see perfor-
mance increase with a maximum at 24 hours. This provides the
most data for classification without overly diluting the labels.

We lastly examine the model’s capability to detect different
types of emotion using the Emotion Statistics feature set, a 24
hour training cutoff, and the 216 test calls within one hour of a
survey. Table 3 presents the AUC for each emotion, averaged
over all iterations and subjects with enough data for testing. Due
to the lack of data, it is difficult to draw conclusions about in-
dividual measures. One exception is ”Anger at Others”, which
has the most subjects (8), highest AUC (0.78), and a relatively
small standard deviation between subjects (0.16). In total, 8/11
emotions have an AUC of at least 0.6, demonstrating an overall
trend in the model’s ability to capture emotion in natural speech.

6. Suicidal Ideation Analysis
In this section, we explore the relationship between suicidal
ideation and emotion estimated from speech. We focus on HC
and SI subjects, as they are the groups with the most data (19
and 12 subjects, respectively). Emotion measures are extracted
from the 2,988 HC and SI calls using the previously trained
DNNs. Each estimate is only taken from models where the sub-
ject was unused during training. We exclude measures of Ex-
cited, Sad, and Shame, as they were previously predicted with
less than 0.6 AUC. We calculate the within-subject standard de-
viation of each emotion to gauge each emotion’s variability.

Figure 3 shows the overall variability of the two groups
across the different emotions. We consistently find that subjects
with SI have lower levels of emotional variability. We then use
those emotions with significant differences (Guilty, Hopeless,

Confident
Happy

Guilty
Worrie

d
Hopeless

Anger at Others

Anger at Self
Irrit

able
0.00

0.05

0.10

0.15

0.20

0.25

W
ith

in
-S

ub
je

ct
 S

td
.

*

* *

*

*

Healthy Control
Suicidal Ideation

Figure 3: The within-subject standard deviation of emotions.
* Designates a significant difference (t-test, p<0.05).

Anger at Others, Anger at Self, Irritable) to classify HC ver-
sus SI. We average each of the five emotion standard deviations
for subjects and use this as an estimate. Using this method, we
attain a performance of 0.79 AUC.

These findings, though preliminary, are inconsistent with
existing research on affective instability and suicide. One study
found that heightened affective instability was associated with
suicidal behaviors [30], while another found no link [31]. How-
ever, individuals in these samples were recruited based on a bor-
derline personality disorder diagnosis and were not compared to
healthy controls, unlike the present analysis. It is possible that
self-reported affect differs from more objective measures (i.e.
speech), or that our experiments consider too few subjects.

7. Conclusions
In this work, we introduced the EMASS dataset, which al-
lows for an investigation into the relationship between speech
from natural conversations, emotion fluctuations, and suicidal
ideation. We successfully detected emotion using the still rela-
tively small EMASS dataset by first generating features repre-
sentative of emotion dynamics on outside data. This shows that
the MADDoG algorithm is capable of training sufficiently gen-
eral representations for use in real-world applications. Finally,
we examined how emotion fluctuations detected from speech
are able to distinguish subjects with recent suicidal ideation
from healthy controls, linking speech, affect, and suicidality.

Collection of the EMASS dataset is currently ongoing and
extracted features will be made available through the NIH Data
Archive. While this paper focused on the momentary ratings of
affect, the participant surveys also include questions related to
mood and suicidal ideation. Furthermore, the EMASS dataset
includes weekly clinical assessments, which could give a more
reliable indication of subject progression. Future work will aim
to detect the onset of suicidal ideation and explore this interplay
between self-assessed and clinician-assessed mood. The emo-
tion dysregulation features introduced in this paper will be key
to making this future analysis possible.
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E. André, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S.
Narayanan et al., “The geneva minimalistic acoustic parameter
set (GeMAPS) for voice research and affective computing,” IEEE
Transactions on Affective Computing, vol. 7, no. 2, pp. 190–202,
2016.

[18] S. Tilsen and A. Arvaniti, “Speech rhythm analysis with decom-
position of the amplitude envelope: characterizing rhythmic pat-
terns within and across languages,” The Journal of the Acoustical
Society of America, vol. 134, no. 1, pp. 628–639, 2013.

[19] S. O. Sadjadi and J. Hansen, “Unsupervised speech activity detec-
tion using voicing measures and perceptual spectral flux,” IEEE
Signal Processing Letters, vol. 20, no. 3, pp. 197–200, 2013.

[20] J. Gideon, E. M. Provost, and M. McInnis, “Mood state pre-
diction from speech of varying acoustic quality for individuals
with bipolar disorder,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2016 IEEE International Conference on. IEEE,
2016, pp. 2359–2363.
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