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Abstract
Aphasia is an acquired language disorder resulting from brain
damage that can cause significant communication difficulties.
Aphasic speech is often characterized by errors known as pa-
raphasias, the analysis of which can be used to determine an
appropriate course of treatment and to track an individual’s re-
covery progress. Being able to detect paraphasias automatically
has many potential clinical benefits; however, this problem has
not previously been investigated in the literature. In this paper,
we perform the first study on detecting phonemic and neologis-
tic paraphasias from scripted speech samples in AphasiaBank.
We propose a speech recognition system with task-specific lan-
guage models to transcribe aphasic speech automatically. We
investigate features based on speech duration, Goodness of Pro-
nunciation, phone edit distance, and Dynamic Time Warping
on phoneme posteriorgrams. Our results demonstrate the fea-
sibility of automatic paraphasia detection and outline the path
toward enabling this system in real-world clinical applications.
Index Terms: aphasia, paraphasia detection, pronunciation mo-
deling, disordered speech recognition

1. Introduction
Aphasia is an acquired language disorder resulting in a loss of
language skills that generally arises from focal brain damage to
the left cerebral hemisphere [1]. In the US, there are approxi-
mately two million people with aphasia and more than 180,000
acquire it every year due to brain injury, most commonly from
a stroke [2]. The speech-language deficits associated with ap-
hasia impact one’s ability to communicate effectively, making
social interaction difficult and frustrating. Aphasia is a chronic
disorder that affects the social, recreational, and vocational li-
ves not only of the affected individuals, but also of their friends
and family members. This results in feelings of social isolation,
loss of autonomy, and loneliness, among others [3].

Anomia (word retrieval deficit) is the core symptom of ap-
hasia and is present in virtually all persons with aphasia (PWAs)
[4]. Those who have anomia often produce various types of pa-
raphasias (naming errors), the most common of which are se-
mantic, phonemic, and neologistic. In these three categories,
respectively, the PWA may substitute the target word (e.g., har-
monica) with a semantically related word (e.g., flute), a pho-
nemically related word (e.g., karmonica), or a non-word (e.g.,
parokada). The type and frequency of the produced parapha-
sias play an important role in estimating the severity of anomia
as well as determining an appropriate treatment approach [5,6].
For example, PWAs who produce mainly semantic paraphasias
may benefit from treatment approaches focusing on word me-
aning, while treatment approaches targeting the phonological
structure of target words may be more appropriate for PWAs
who produce mainly phonemic paraphasias [5, 7].

Being able to detect paraphasias automatically from a

PWA’s speech (e.g., through a computer-based word-finding
exercise) would provide SLPs with a useful tool for both di-
agnostic and progress-monitoring purposes and, as such, would
help guide the treatment process. Additionally, it could lead to
computer-based activities for in-home practice for PWAs, the-
reby increasing the intensity of practice and facilitating carry-
over of progress from therapy to other environments. It could
also serve to increase a PWA’s awareness of errors and enhance
self-monitoring skills and, thus, promote independence in over-
all communication. However, the automatic detection of para-
phasias has not previously been studied in the literature.

In this work, we present a pilot study that investigates the
feasibility of detecting phonemic and neologistic paraphasias
automatically from aphasic speech. We demonstrate that when
the target transcript is known, phonemic and neologistic para-
phasias can be successfully distinguished from correctly pro-
nounced words. We also investigate a variant of the problem in
which the target transcript needs to be generated automatically.
In this setup, our system is able to outperform the naı̈ve base-
line in detecting the presence of paraphasias in utterances, and
achieve good correlation in estimating the rate of phonemic pa-
raphasia production for each speaker. The results and analyses
provided in this work help lay the foundation for future work
targeting automatic paraphasia detection.

2. Related Work
To the best of our knowledge, no existing work has looked at
paraphasia detection in aphasic speech from a technical per-
spective. Previous works primarily tackled utterance-level and
speaker-level classification problems for therapeutic and diag-
nostic purposes [8–12]. Peintner et al. [8] proposed speech and
language features to distinguish between three types of fronto-
temporal lobar degeneration, including progressive non-fluent
aphasia. Fraser et al. [9] combined transcript and low-level
acoustic features to classify between two subtypes of primary
progressive aphasia (PPA). Le et al. tackled the problem of
predicting utterance-level pronunciation, fluidity, and prosody
scores given read speech samples of PWAs [10–12]. The most
closely related works are those of Abad et al. [13, 14], which
used keyword spotting to recognize phrases spoken by PWAs
during word naming exercises. However, they did not consider
fine-grained word-level labels such as paraphasias.

In an oracle setting where we have access to a PWA’s target
transcript, automatic paraphasia detection shares certain simila-
rities with mispronunciation detection, an extensively studied
problem in the literature. The task in both cases is to clas-
sify each word in the transcript as either correct or containing
errors. We adopt techniques proposed by Lee et al. [15–17],
which compared a non-native speaker’s word- and phone-level
pronunciations against those of a native speaker, using Dynamic
Time Warping (DTW) features extracted on phoneme posterior-
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Target I have aphasia
P1 I have the aphasia
P2 have æfezi@@u [: aphasia] [* n:k]
P3 I have v@fe3@@u [: aphasia] [* p:n]

Table 1: Example AphasiaBank transcripts.

Speaker Utts Words Phonemic Neologistic
P1 85 787 90 72
P2 108 879 108 66
P3 109 1060 113 46
P4 88 767 108 75
P5 67 652 101 36
P6 37 262 28 61
P7 103 1118 67 18
P8 104 1076 117 24
P9 93 901 146 53

P10 6 47 2 4
P11 67 607 136 112
P12 123 1154 101 32

Total 990 9310 1117 599

Table 2: Dataset summary.

grams. However, PWAs often do not produce the correct target
due to their speech-language impairments. Consequently, target
transcriptions may not be available, and reference utterances do
not always exist, making it difficult to apply techniques from
mispronunciation detection. In this paper, we investigate the
oracle use case where target transcripts are available, as well as
a more realistic scenario in which automatic speech recognition
(ASR) is used to generate the transcripts automatically.

3. Data
AphasiaBank is a large-scale audiovisual dataset primarily used
by clinical researchers to study aphasia [18, 19]. It contains a
number of sub-datasets collected by different research groups
under various recording conditions and elicitation protocols.
We focus on the Fridriksson sub-dataset of the Scripts portion of
English AphasiaBank, which contains recordings of 12 PWAs
reading from four predefined scripts (advocacy, eggs, vast, and
weather). The other Scripts sub-dataset, Adler, consists of six
high-functioning PWAs and very few instances of paraphasias.
We therefore exclude it from this study.

Each utterance in this set was transcribed verbatim with
word-level error codings in concordance with the CHAT
transcription format [20]. Word-level error codes include se-
mantic, phonemic, and neologistic paraphasias, each of which
is accompanied by a target word. Table 1 shows example
transcripts of three PWAs reading the prompt “I have aphasia.”
P1 produced the target without any paraphasia, but added an ex-
tra “the.” P2 and P3 produced neologistic and phonemic para-
phasias, respectively, for the target word “aphasia.” The actual
pronunciation was transcribed in IPA format (ending with @u).

We target phonemic and neologistic paraphasias in this
work. Detecting semantic paraphasias requires a different ap-
proach and will be addressed in future work. Table 2 summari-
zes the 12 speakers in the dataset, along with the utterance and
word count, as well as the number of phonemic and neologis-
tic paraphasias. In total, phonemic and neologistic paraphasias
account for 12.0% and 6.4% of the words, respectively.

All experiments in this paper are performed with leave-one-
speaker-out cross-validation in order to assess the system’s per-
formance on unseen speakers. We further withhold 10% of ut-
terances from each training speaker to form a development set.

4. Paraphasia Detection
4.1. With Known Target Transcripts

We first want to determine if it is possible to separate phone-
mic and neologistic paraphasias from correct words. We define
the target transcript of an utterance as the original transcript in
which all phonemic and neologistic paraphasias are replaced
with their corresponding targets. Thus, the target transcripts in
Table 1 will be: “I have the aphasia” (P1), “have aphasia” (P2),
and “I have aphasia” (P3). We assume that we have access to
the target transcripts. The goal is then to label each word accor-
ding to one of the following binary classification schemes:

• C–pn: correct (C) vs. phonemic or neologistic (pn).

• C–p: correct (C) vs. phonemic (p).

• C–n: correct (C) vs. neologistic (n).

where correct words are defined as those without any error code.
We exclude words that do not fall under any labeling cate-
gory (e.g., semantic paraphasias), as well as audible background
noise, breath sounds, fillers, and laughters.

Metric: although the focus of this work is to detect pho-
nemic and/or neologistic paraphasias, we argue that detecting
correctly produced words is equally important. We therefore
utilize the average F1 score across classes for evaluation.

Baseline: no baseline currently exists as this is the first
work to tackle paraphasia detection. We adopt a simple appro-
ach that labels every word as correct (i.e., the majority class).

4.2. Without Known Target Transcripts

The target transcripts will not be available in advance for many
real-world applications. We propose to transcribe test utteran-
ces automatically with ASR to overcome this limitation. Given
the hypothesized transcripts, we can utilize the same classifica-
tion models in Section 4.1 to obtain predicted word labels.

We consider three types of evaluation metrics that measure
the system’s performance at the word, utterance, and speaker
level. These metrics will help determine the system’s applica-
bility under different levels of analyses.

Word-Level Metric: the ideal paraphasia detection system
should simultaneously generate the correct target transcripts
and label each word accurately. We encode this idea by aug-
menting the hypothesized and reference target transcripts with
corresponding word labels. Under the C–pn classification
scheme, the augmented reference transcripts in Table 1 will be:
“I/C have/C the/C aphasia/C” (P1), “have/C aphasia/pn” (P2),
and “I/C have/C aphasia/pn” (P3). Given an augmented hypot-
hesized transcript, its Word Error Rate (WER) compared to the
reference captures both transcription and word labeling errors.
We henceforth refer to this metric as augmented WER (AWER).

Utterance-Level Metric: aphasic speech is known to be
difficult to recognize [21], thus achieving good AWER may be
challenging. Instead of providing detailed word-level predicti-
ons, the system can simply output whether or not a given ut-
terance contains paraphasias, i.e., a binary prediction problem.
We again adopt average F1 as the evaluation metric.

Speaker-Level Metric: using the same reasoning, the sy-
stem can be modified to estimate the rate of paraphasia pro-
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duction for a given speaker, which helps indicate anomia seve-
rity. We evaluate this task by computing the Pearson correla-
tion coefficient (r) between the predicted and actual paraphasia
occurrence rate per minute for all speakers in the dataset.

5. Methods
5.1. Acoustic Modeling

Given the small size of the dataset, we adopt an out-of-domain
training approach, motivated by previous work in disordered
speech recognition [21, 22]. We first train an acoustic model
on the core AphasiaBank dataset, which contains approxima-
tely 126 hours of spontaneous speech elicited through the Ap-
hasiaBank protocol. We then adapt (retrain) the model on each
training fold in our dataset. We refer to these two models as the
out-of-domain (OOD) and in-domain (ID) models, respectively.

We utilize a multi-task deep bidirectional long-short term
memory recurrent neural network (DBLSTM-RNN) to predict
both the correct senone and monophone labels for each frame.
DBLSTM-RNN acoustic models have been shown to achieve
state-of-the-art results on various ASR benchmarks [23–25],
while training on senones and monophones jointly is known to
improve performance [26–28]. In addition, the monophone out-
put of the network represents a distribution over phonemes, also
referred to as phoneme posteriorgrams. They can be viewed as
a compact representation of each speech frame.

Input Features: we use Kaldi [29] to extract 40-
dimensional log Mel filterbank coefficients, using a 25ms
window and 10ms frame shift. We perform per-speaker z-
normalization and augment each feature frame with five left and
right neighbors, resulting in 440 dimensions per frame.

Model Architecture: our multi-task DBLSTM-RNN con-
sists of four hidden BLSTM layers, each with 1200 units (600
for forward, 600 for backward). The senone and monophone
output layers contain 4550 and 46 units, respectively.

OOD Training: we train the network with the Adam opti-
mizer [30], full Backpropagation Through Time, Cross Entropy
(CE) loss, 0.4 dropout, and an initial learning rate of 0.001. We
perform early stopping using the development frame error rate
and an exponential-decay learning schedule [21].

ID Adaptation: we adapt the OOD network to the smaller
training set using the same strategies as in OOD training, with
two modifications. Firstly, we modify the loss function to also
minimize the Kullback-Leibler divergence (KLD) between the
ID and OOD model outputs. This has been shown to be an ef-
fective regularization technique [31]. Secondly, we employ the
step-decay learning schedule [21] with a 0.00005 minimum le-
arning rate. We select the KLD weight (0.25 or 0.5) and dropout
rate (0.4 or 0.6) based on the development frame error.

5.2. Feature Extraction

The ID acoustic model obtained from the previous step can be
used to detect word and phone boundaries via forced alignment
with the target transcripts. In addition, the phoneme posterior-
grams produced by the model provide a compact representation
of word and phone segments. Given this information, our ob-
jective is to extract features for each word that can help separate
phonemic/neologistic paraphasias from correct words. Our fea-
tures can be grouped into the following sets.

Goodness of Pronunciation (GOP): GOP is a widely used
metric for assessing pronunciation, first proposed by Witt and
Young [32]. It has also been used successfully in our previous
work to estimate aphasic speech quality [10, 12]. GOP invol-

ves calculating the difference between the average acoustic log-
likelihood of a force-aligned word-level segment and that of an
unconstrained phone loop. The closer this number is to 0, the
more likely that the pronunciation of this word is correct. We
extract the GOP as well as the raw forced alignment score for
each word. All calculations are performed on our DBLSTM-
RNN’s phoneme posteriorgram output.

Phone Edit Distance (DIST): both phonemic and neolo-
gistic paraphasias involve deviations between the spoken and
correct phone sequences. The spoken phone sequence can be
estimated from an unconstrained phone loop over the word seg-
ment, and the correct phone sequence can be obtained from for-
ced alignment results on the target transcript. For each sequence
pair, we extract the raw edit distance, edit distance normalized
by alignment length, as well as the number of insertions, deleti-
ons, and substitutions normalized by alignment length.

Dynamic Time Warping (DTW): the underlying assump-
tion behind these features is that the phoneme posteriorgrams of
phonemic and neologistic paraphasias are different from those
of correct words. Given a candidate word, we can find refe-
rences of this word in the ID training set that are marked as
correctly produced, along with their phoneme posteriorgrams.
Following Lee et al. [15–17], we compare posteriorgram pairs
using DTW, where the distance between two frames ci and rj
is defined as their inner product distance:

D(ci, rj) = − log(ci · rj) (1)

We extract the following features for each candidate-
reference posteriorgram pair: raw DTW distance, DTW dis-
tance normalized by aligned path length, and length of the lon-
gest horizontal/vertical aligned segment normalized by aligned
path length. We extract the mean, median, lower and upper
quartile, and standard deviation of each feature group to pro-
duce word-level features. We extract a similar set of features
for all candidate-reference phone pairs within the word, given
that they might provide complementary information. If a can-
didate word has fewer than three references, we use the average
features of all correct words in the training set. This accounts
for 6–7% of all candidate words across the 12 training folds.

Duration Measures (DUR): these features are also inspi-
red by Lee et al. [15–17] and extracted similarly to DTW. Ho-
wever, we compare the differences in durations instead of pos-
teriorgrams. For each candidate-reference word/phone pair, we
extract the ratio between their durations, and the difference in
duration normalized by the candidate and reference durations.

As a final post-processing step, we z-normalize all features
using statistics computed from correct words in the training set.

5.3. Automatic Transcription

Automatic transcription of test utterances can be performed by
combining our DBLSTM-RNN acoustic model with a language
model (LM) for decoding. We experiment with two LM types
in this work. Firstly, we use a trigram model estimated on the
ID training and development set. We refer to this model as the
global LM. Secondly, we take advantage of the fact that utte-
rances in the dataset are limited to four predefined scripts with
different vocabulary and sentence structures. Therefore, it may
be beneficial to use a trigram model estimated on the portion
of the training and development set corresponding to the same
script as the current test utterance. We refer to this as the task-
specific LM. In both cases, the LM weight and word insertion
penalty are chosen based on the development WER.
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Global LM Task LM
OOD AM 65.82 60.97

ID AM 47.68 45.11

Table 3: WER with different language and acoustic model types.

Table 3 lists the test WERs for different acoustic and lan-
guage model combinations. As expected, the best performance
is obtained with an in-domain acoustic model and task-specific
language model. We will use the hypothesized transcripts pro-
duced by this system for all relevant experiments.

5.4. Paraphasia Classification

We consider three standard classification algorithms implemen-
ted in scikit-learn [33], decision trees (DT), logistic regression
(LR), and support vector machines (SVM). Hyperparameters
are selected based on the average F1 score on the development
set. Test predictions are aggregated across all 12 training folds.
We report the test performance on this aggregated test set.

6. Results and Discussion
6.1. Paraphasia Detection With Known Transcripts

Paraphasia classification results from known transcripts using
different feature sets and labeling schemes, measured in average
F1 scores, are summarized in Table 4. We show results from the
classifier that yields the best overall test performance.

All of our systems are able to outperform the naı̈ve base-
line, demonstrating that it is feasible to automatically separate
correctly produced words and phonemic/neologistic parapha-
sias. In particular, neologistic paraphasias (C–n) are easier to
detect than phonemic paraphasias (C–p) under this problem se-
tup. This is consistent with the clinical definitions of these two
paraphasia types. Because neologistic paraphasias, by defini-
tion, involve more deviations from the sounds in the target word,
they are better characterized by our proposed features.

In all three labeling schemes (C–pn, C–p, and C–n), the best
performance is obtained by using all features, with DTW gene-
rating the best individual results. This demonstrates the utility
of the phoneme posteriorgram representation produced by our
multi-task DBLSTM-RNN acoustic model. A potential met-
hod to further exploit phoneme posteriorgrams is to use them as
features in whole-word acoustic modeling, which may lead to
better discrimination than template matching techniques. GOP
features traditionally perform favorably compared to DTW for
mispronunciation detection [16], but not so in our work. A pos-
sible way to improve GOP performance in this task is to extract
phone-level GOP scores alongside word-level features. Like-
wise, duration-based features (DUR) may benefit from establis-
hed measures in rhythm analysis, such as Pairwise Variability
Error [34]. We will explore these ideas in future work.

Finally, we observe that different feature sets benefit from
different classification algorithms. Logistic regression and
SVM work well with primarily continuous features such as
GOP, DTW, and DUR. By contrast, decision tree yields better
performance on DIST, whose features are largely discrete.

6.2. Paraphasia Detection Without Known Transcripts

We are interested in how the best (bolded) models in Table 4
perform when target transcripts for test utterances are generated
automatically with ASR. Table 5 lists the results at the word,
utterance, and speaker level, as described in Section 4.2.

C–pn C–p C–n
Baseline .442 .461 .484

GOP .615 (SVM) .560 (LR) .590 (SVM)
DIST .619 (DT) .556 (DT) .662 (DT)
DTW .699 (SVM) .611 (LR) .746 (LR)
DUR .628 (LR) .556 (DT) .652 (LR)

All Feats. .704 (LR) .632 (LR) .761 (LR)

Table 4: Paraphasia detection results with known target
transcripts, measured in average F1. The best performing clas-
sifiers are indicated in parentheses.

C–pn C–p C–n
Word

[AWER]
53.46

(53.39)
54.18

(51.48)
47.84

(47.18)
Utterance
[Avg. F1]

.594
(.412)

.611
(.373)

.604
(.404)

Speaker
[r]

.479
(N/A)

.749∗

(N/A)
.057

(N/A)
∗statistically significant (p ≈ 0.005, 2-tailed test)

Table 5: Paraphasia detection results without known target
transcripts. Naı̈ve baseline performance is in parentheses.

For word-level, the goal of the system is to simultaneously
recognize and label each word accurately. However, our system
is unable to outperform the naı̈ve baseline in terms of AWER.
As previously discussed, this is challenging because aphasic
speech poses significant problems for ASR, and it is difficult
to obtain reliable word-level predictions without accurate target
transcripts. This suggests that aphasic speech ASR performance
must be improved before paraphasias can be detected reliably at
the word level without known transcripts.

Meanwhile, utterance-level results, which involve detecting
the presence of paraphasias in an utterance, appear more pro-
mising. Our system outperforms the naı̈ve baseline in all three
classification schemes, suggesting that although word-level pre-
dictions may be unreliable, meaningful clinically-relevant infor-
mation can still be extracted at a coarser level of analysis.

We also observe positive results for estimating the parapha-
sia production frequency of a particular speaker, which can be
tied to anomia severity. Specifically, we obtain a statistically
significant Pearson correlation coefficient of 0.749 (p ≈ 0.005,
2-tailed test) for estimating the rate of phonemic paraphasia
production. However, there is virtually no correlation for ne-
ologistic paraphasias. We hypothesize that while neologistic
paraphasias are easy to classify from known transcripts, they
are difficult to detect in a free-form setting because our ASR
system fails to recognize them. This again calls for further im-
provement in aphasic speech recognition.

7. Conclusion and Future Work
In this paper, we presented the first study on detecting phonemic
and neologistic paraphasias automatically from aphasic speech,
utilizing techniques from ASR and mispronunciation detection.
We demonstrated the feasibility of detecting paraphasias from
known target transcripts. We showed the utility of utterance-
and speaker-level analysis when target transcripts are generated
automatically with ASR. For future work, we will investigate
additional feature extraction methods, experiment with ways to
further improve and analyze aphasic speech recognition perfor-
mance, and tackle semantic paraphasia detection.
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