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Abstract— We propose a temporal segmentation and classi-

fication method that accounts for transition patterns between

events of interest. We apply this method to automatically detect

salient human action events from videos. A discriminative clas-

sifier (e.g., Support Vector Machine) is used to recognize human

action events and an efficient dynamic programming algorithm

is used to jointly determine the starting and ending temporal

segments of recognized human actions. The key difference from

previous work is that we introduce the modeling of two kinds of

event transition information, namely event transition segments,

which capture the occurrence patterns between two consecutive

events of interest, and event transition probabilities, which model

the transition probability between the two events. Experimental

results show that our approach significantly improves the

segmentation and recognition performance for the two datasets

we tested, in which distinctive transition patterns between

events exist.

I. INTRODUCTION

The pervasive installations of large camera networks and
widely availability of digital video cameras have created a
gigantic volume of video data that need to be processed
and analyzed to retrieve useful information. As many videos
involve human activities and behaviors, a central task and
main challenge in video analytics is to effectively and
efficiently extract complex and highly varying human-centric
events. A general purpose event recognition system entails
two essential steps: the localization of temporal segments
in a video containing salient events (when something hap-
pened) and the classification of localized events into relevant
categories (what happened). The extracted events can be
piped for further analysis, such as indexing and retrieval of
video collections in multimedia applications and suspicious
behavior recognition in video surveillance.

Most update-to-date video event analysis methods treat
event localization and classification as separate problems
(e.g. [13], [15]). It has been noticed that these two problems
are interrelated and can mutually bootstrap each other [3],
[9]. Better event localization improves subsequent classifica-
tion performance, while reliable event classification can be
used as a guide for more precise localization. Based on this
intuition, recent efforts have emerged in unifying both the
localization and classification problems. These methods fall
into two main categories: (i) generative approaches based
on dynamic Bayesian models, such as the hidden Markov
model (HMM) [1] and switching linear dynamical systems

(SLDS) [16]; and (ii) discriminative approaches, which use
maximum margin classifiers as in [2], [3], [9].

Conventional event models used in most existing methods
only consider monolithic or persistent events. For example,
action recognition focuses on the identification of action
states such as walking or standing with arms folded. These
methods ignore the regular transition patterns often exist
between events of interest. To illustrate, consider a person
with his/her arms down in a resting position who starts to
raise his/her arm to touch his/her nose. A transition segment
or event in which the arm moves upward governs the change
between gesture states. Although a naive detection of such
transition might be difficult (following the generative or
discriminative approaches), the consecutive motion flow in
between the transitions is indeed unique and recognizable.
Explicitly incorporating transition patterns into the recogni-
tion framework will provide more reliable cues to localize
and recognize persistent events.

In this paper, we propose a new method that jointly
analyzes video events with precise temporal localization
and classification, by modeling arbitrary transition patterns
between events. It improves event recognition rates by lever-
aging the clearly identified event boundaries. Our method
combines two approaches together by explicit modeling of
event transition segments: (i) large margin discriminative
learning of distinct event patterns (also introduced in [3], [9])
and (ii) generative event-level transition probability models.
The event location and classification can be found by an effi-
cient dynamic programming (DP) inference. Our framework
is general to any time series data that have transition patterns
between events and is applicable to problems outside video
analytics. For human action recognition in particular, the
use of transition patterns can greatly improve performance.
Since even the same action (e.g. touching face) can be highly
varying in both spatial and temporal domains, their transition
patterns are more important for robust systems. Explicit
consideration of transition patterns increases robustness and
can provide critical information for decision making [17],
[20], [25].

We focus on the application of video-based human ac-
tion recognition. Specifically, we extract per-frame human
pose estimation cues (i.e. body joint coordinates) [19] as a
time series signal. We compute variable-length segment-level
features using statistical functionals and linear regression
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Fig. 1: Overview of the proposed video event localization and classification framework, where the event types are, e.g.,
Crossing arms on Chest (CC), Touching Face (TF), Arms on Hip (AH), and Neutral (N) (Section IV-A). The temporal onset
and offset transitions between these events are optimally solved by efficient dynamic programming.

coefficients (slope) of the frame-level features for each
segment. In the supervised training phase, we use labeled
intervals of video events and their corresponding event types
to train a discriminative model. This model is used in the
testing phase, in which for a given test video, we infer the
best segmentation start and end points with corresponding
event labels, by searching for the highest pattern matching
score and transition probability using efficient dynamic pro-
gramming. Figure 1 provides an overview of our framework.

Our method has demonstrated significantly improved clas-
sification and localization performance on a newly collected
video dataset and a public CMU-MAD [10] benchmark
dataset, in comparison to a state-of-art work [9].

II. RELATED WORK

Human action recognition is an active research area in
computer vision [18], [22], [26].
Video segmentation. Segmentation of videos into salient
events is an important task in video analysis that facili-
tates the retrieval, indexing, annotation, and representation
of video data [12]. Traditionally it entails shot boundary
detection, i.e., the complete segmentation of a video into
continuously imaged temporal segments [5].
Video event recognition. A recent research trend in temporal
segmentation is based on salient events of interest, rather than
continuously recorded images, e.g., [9], [14], [21], [28]. Tang
et al. studied Hidden Markov Model (HMM)-based models
to learn the temporal structure of complex events in Internet
videos [21]. They utilized a variable-duration HMM to model
the durations and transitions of an event segment of interest,
where the model is trained in a discriminative, max-margin
fashion. They achieved competitive accuracies on activity
recognition and event detection tasks. However, their work
differs from ours in that a video clip with a single event

label is analyzed, instead of a video sequence with multiple
events. Hoai et al. [9], Cheng et al. [3], and Zhou et al.
[28] studied the temporal segmentation of human action

videos that contain multiple action events. Hoai et al. jointly
localized and classified action events using a max-margin
classifier and DP, which is most relevant to our work [9].
The main difference is that our approach benefits from the
inclusion of transition events (i.e. events between two salient
events of interest). The introduction of event transitions and
the probabilistic modeling, and an efficient implementation
are the key novelties of our work. Cheng et al. demonstrated
the importance of temporal dependencies between events in
joint segmentation and classification tasks [3], by applying
the Sequence Memorizer [27]. The main difference of our
work is that our system identifies events at the individual
frame level, whereas the work of Cheng et al. represents
a video using visual words of fixed-length sub-sequences.
Zhou et al. studied unsupervised temporal clustering of
human motion using the kernel k-means algorithm with the
generalized dynamic time alignment kernel [28]. Our work
differs from [28] in that we utilize the event-level transition
information, to capture longer-range temporal information of
human motions.
Generative and discriminative event modeling. Transition
events have been handled using generative models (e.g.,
transition matrix in HMM) [8] and modeled as individual
transition events in specific domains, for example the onset
and offset states in facial Action Unit recognition. Galata
et al. used variable-length Markov models that temporally
segmented human activities into atomic behavior compo-
nents [8]. Valstar et al. presented a hybrid SVM/HMM
system to segment a facial action into temporal phases (e.g.
onset, offset, peak, and neutral states), with a noticeable
performance gain [23], [24]. They used a sigmoid function



operating on the SVM outputs as an emission probability
for HMMs (instead of traditional Gaussian mixture models,
since SVMs discriminate extremely well). Several studies
have demonstrated the efficacy of using transition informa-
tion for temporal segmentation of videos [21].
Event transition in facial movements. Studies in facial
Action Units (AU) detection have demonstrated the utility
of event transition information [7], [11], [23], [23]. AUs
are anatomical facial muscle actions based on the Facial
Action Coding System (FACS), where 9 upper face AUs and
18 lower face AUs are defined [24]. The set of AU’s can
be categorized by their transition states into onset (muscles
contracting and expression becoming stronger), peak (with
consistently strong expression), and offset (muscles relax-
ing back to neutral appearance) phases. The order of the
phases are often “neutral-onset-peak-offset-neutral”, whereas
spontaneous facial expressions with multiple peaks and other
ordering are also possible [4], [23]. Koelstra et al. introduced
a combination of discriminative frame-based GentleBoost
ensemble learners and used a dynamic generative HMM to
detect AU and its temporal segments [11]. The ‘cascade of
tasks’ of Ding et al. combines outputs of different tasks
(frame, segment, and transition detection) linearly for the
final AU event detection [7]. The combination parameters are
learned by cross-validation, and independent onset and offset
detectors were trained using a linear SVM for transition
detection.

To our best knowledge, the use of transitions in discrimi-
native learning has not been extensively exploited for event
recognition, in particular for the purpose of joint localization
and classification of complex video events.

III. PROPOSED METHOD

Our method can be applied to general tasks of segmenting
human actions with transition patterns. Our proposed algo-
rithm (Equation 2) is generic to model arbitrary transitions
between actions, and transitions between actions and neutral
states (e.g., standing person with hands down). Any tran-
sition event model can be applied based on the transition
characteristics that reflect the nature of the problem or the
dataset. However, neutral states between events are prevalent
in the datasets we performed experiments on, and thus it is
important to model them effectively in our chosen transition
event model. We describe our event transition model with
segment transition probabilities in Section III-A. We then
describe our generic method for event finding, localization
and classification: the training of a multi-class SVM using
the peak and transition segments (Section III-B.1) and the
inference and labeling of each putative temporal segments
using the SVM and dynamic programming (Section III-B.2).

A. transition Event Model
Event Peak and Transition Segments. Any transition event
model can be used to describe the temporal characteristics
present between events of interest. Since the two datasets
we tested have prevalent neutral states between events, we
explicitly models four types of segments in this paper:
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Fig. 2: transition event model example: the neutral-onset-
peak-offset-neutral model of cross arms on chest. For visu-
alization purpose, the joint angle ✓ between the upper and
lower arms is shown as a cue to segment out the “cross arms”
and “arm-down” events.

neutral, peak, onset, and offset. Neutral segments describe
no significant visual cues of any event of interest. Peak
segments describe salient and consistent visual cues of an
event of interest. Both the definitions of neutral and peak
can be application dependent (see Section IV). For each event
type, we define two types of event transition segments based
on the neutral and peak segments: Onset transition segments
describe the transition from neutral to peak events, and Offset
transition segments describe the transition from peak back to
neutral.

In many video event analytic applications, segments of no
particular utility or interest can be modeled as neutral events.
Visual cues of onset transitions of the same peak event share
commonalities (and the same for offset transitions). Thus
a repeating sequence of “neutral-onset-peak-offset-neutral”
can be found in many event types of interest. For instance,
Figure 2 shows an example of neutral, onset, offset, and peak
segments for the action event corresponding to “crossing
arms on chest.” We assume a simpler event model that
does not consider direct transitions between events without
going through the neutral event. This assumption effectively
reduces the modeling of rarely occurred transitions, as sup-
ported by our experimental results.
Segment-level Transition Probability. We model the tem-
poral patterns between neutral, peak, onset, and offset seg-
ments using a transition probability matrix. Following the
neutral-onset-peak-offset-neutral observation from the train-
ing dataset, the transition probability from peak to offset,
offset to normal, and onset to peak can be equally assigned to
a default value based on the frequencies of event transitions.
For the transition from neutral states, we model two cases:
(i) the changing to one of the m types of possible events
is modeled with a transition probability P , or (ii) the event
remains unchanged, which is modeled with a self-transition
probability �. In this work, � was chosen as 0.5 to maximize
the randomness of repeating the same events.

B. SVM-based Event Localization and Classification

The input and output notations of our proposed system
are described in Figure 1. We first train a multi (M )-class
SVM using event peak and transition segments (vs. neutral
segments). In testing, for a given video X without any
segmentation information, we automatically find the optimal
number of segments k, the temporal start and end points of



each segment s
t

, t 2 1, ..., k + 1, where s1 = 0 and s
k+1 =

len(X) the length of X , and segment labels y
t

, t 2 1, ..., k.
Our method keeps track of the highest sum of SVM scores
and the log transition probability of all segments.

1) Training Segment-SVM with Max Margin Optimization:
We learn discriminative patterns of each peak and transition
segments using a multi-class SVM [6] similar to [9]. For
each video sequence in the training data Xi, where i 2
{1, 2, ..., n}, with known segments t 2 {1, 2, ..., k
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is the number of segments of the i-th video sequence, we
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We describe the segment-level feature mapping in detail in
Section IV.

2) Efficient Inference with Dynamic Programming:
Transition-based Segmentation. For each test video se-
quence X with unknown segment points and labels, we
segment and classify the sequence using the following opti-
mization function that maximizes the sum of the total SVM
scores and the log transition probability between consecutive
segment pairs:

max
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The intuition is to maximize the sum of segment-specific
scores for each segmentation configuration, i.e. determine the
number of total segments k, segment points s

t

, and segment
labels y

t

, where t 2 {1, 2, ..., k+1}, as well as the probability
of transition from one segment to another. l

min

and l
max

are the minimum and maximum length of segments in the
training data.

The relationship between temporally adjacent segments
(1+ �) logP (y

t

|y
t�1) is calculated based on our prior tran-

sition probabilities described in Section III-A. Our novelty
compared to Hoai et al. [9] is the logP (y

t

|y
t�1) term

that explicitly considers event transitions in the optimization
framework. Our work also differs from [9] in that non-
maxima suppression based segmentation is performed (in-
stead of a maximum SVM score based segmentation). Hoai
et al. chooses the optimal segmentation that maximizes the
difference of SVM scores between the best and the second
best class, by filtering using the Hinge loss. We take a
different approach by seeking the optimal segmentation that
maximizes the sum of both (i) the SVM score of the segment
class and (ii) the transition probability between consecutive
segments.

Inference using DP. To solve Eq.(2) efficiently, we formulate
the following function f to determine the best segmentation
for the truncated time series X(0,u],
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k
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where k is the number of segments for the truncated X(0,u].
u can be considered as the increasing “front” of the dy-
namic programming (DP) formulation. Since the transition
probability depends on the last segment’s label y

k

of the
truncated time series X(0,u], each f value depends on u
as well as y

k

. Therefore, for every tuple u 2 (0, len(X)),
l 2 [l

min

, l
max

] and class y 2 {1, 2, ...,M}, we calculate
⌘(u, l, y) = wT

y

'(X(u�l,u]) for inference, where ⌘ is the
SVM score of the segment X(u�l,u]. Dynamic programming
computes max

yk f(len(X), y
k

) efficiently using Equation 4.
Algorithm 1 lists the pseudo code, where w is a learned
weight vector, testX and len(X) are test video sequence and
the number of frames of it, m

tr

and std
t

r are mean and
standard deviation of each feature dimension in the training
data for z-standardization, nCl is the number of classes, and
transMat is a transition matrix to calculate f .
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Algorithm 1: DP with transition Event Model
Data: learned weight vector w, test video X , m

tr

, std
tr

,
l

min

, l
max

, number of classes nCl

Result: f , bestL, bestY
k�1

for each frame u = l

min

: len(X) do

for each last segment label y
k

= 1:nCl do

for l = l

min

:min(l

max

, u� 1) do

Calculate ⌘(u, l, y) = w

T

y

'(X(u�l,u]), where
'(X(u�l,u]) is z-standardized using m

tr

and
std

t

r.
end

for each second last segment label y
k�1 = 1:nCl do

f
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end

end

Use f, bestL, bestY

k�1 for back-tracking

The complexity of our algorithm is O(M2
(l
max

� l
min

+

1)(len(X)� l
min

+ 1)).

IV. EXPERIMENTS

We evaluate our method for joint segmentation and clas-
sification of video events on two datasets: (i) the Smartroom
Dataset we collected for real-life suspicious behavior recog-
nition and (ii) the public CMU-MAD human action dataset
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Fig. 3: Evaluation results from our Smartroom (Clean) Dataset (video 1). The four rows of illustrations depict ground truth
(first row), result of our method with transition segments (second row), result of our method with combined transition (onset
and offset) segments into a single action segment to match the comparison of Hoai et al. (third row), and SVM+DP method
output presented by Hoai et al. [9] (bottom row), respectively.

[10]. Both of the datasets contain large variability in human
poses and actions.

We compare the performance of our algorithm to the
SVM-DP algorithm of Hoai et al. [9]. For a fair comparison
to the SVM-DP algorithm of Hoai et al., which does not
consider the transition segments, we calculate the recogni-
tion rate after transferring the estimated M action classes
with transition segments, where M = {m peak events} +

{1 neutral event}+{m offset events}+{m onset events}, to
m peak action classes, as shown in Figure 3. We combine the
detected onset, offset, and peak segments of each action into
one action. For instance in our Smartroom Dataset, after we
finish back-tracking and get 10-class labels for each detected
segment, we combine onset, offset, and peak segments into
one action segment to match the 4-class ground-truth labels.

We report the performance of both algorithms in terms of
frame-level and event-level recognition rates. (i) Frame-level
recognition rate measures the ratio of frames that are cor-
rectly classified. We compute frame-level precision (‘Prec’),
recall (‘Rec’), and F-measure (‘F-mea’). The accuracy is
calculated as (TP +TN)/(TP +TN +FP +FN), where
TP , TN , FP , and FN are true positive, true negative, false
positive, and false negative, respectively. (ii) The measure of
event-level recognition rate is suggested in [10] to reflect
the ratio of event segments that are correctly identified, by
counting the number of correct frames that overlaps with
50% of a segment. We evaluate event-level precision, recall,
and F-measure. Event-level precision (prec) computes the
ratio between the number of correctly detected events and
the number of detected events and event-level recall (rec)
computes the ratio between the number of correctly detected
events and the number of ground truth events. Event-level F-
measure computes the balanced F-score using 2 ⇤ prec⇤rec

prec+rec

.
In our datasets where there is at most 9 ground truth events,
our event-level recognition rate is highly sensitive compared
to frame-level recognition rates.

A. Smartroom Dataset

We create a new Smartroom Dataset with volunteers per-
forming a series of upper body actions, where the challenge
is that both the temporal durations of events and the number
of events are unknowns. The dataset contains six subjects
performing a mix of the following actions in 8 videos:
Crossing arms on chest (CC), Touching face (TF), Arms on
hip (AH), and Normal (N). Each action is repeated two to
three times in each video. Normal action represents the case
of hands down in a resting position. The average length of
the videos is 47.8 seconds. Each of the {CC, TF, AH} actions
was enacted sequentially following the “neutral-onset-peak-
offset-neutral” pattern for the right arm, left arm, and both
arms. The enacted events share a large extent of variations
in terms of temporal durations and spatial locations.

We use the MODEC algorithm [19] to estimate per-
frame body pose cues to serve as action features, and we
employ a Kalman filter to produce a smooth pose time
series. The pose estimation from the image is converted into
body joint angles as shown in Figure 5. The performance
of MODEC pose estimation varies for different clothing and
illumination conditions. We evaluate the robustness of event
recognition upon such variability in the input data. We divide
the Smartroom dataset into two subsets and evaluate our
system for each subset: (i) the ones with more accurate
pose estimation (“Clean”), (ii) the remaining with large pose
estimation noise due to appearance and clothing variations
(“Noisy”). Comparisons of the MODEC pose estimations
on the two subsets are shown in Figure 4. The Smartroom
(Clean) dataset contains three videos, and the Smartroom
(Noisy) dataset contains five videos.

Two types of segment-level features ' are extracted for
each video segment: (1) the first and second-order statistics
(mean and standard deviation) of the frame-level features,
and (2) the linear regression coefficient (slope) across frames
within each segment, which captures the dynamics of the
changes of the frames within the segment. We perform z-
standardization to normalize the segment-level features as
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Fig. 4: Pose estimation comparison between the Smartroom
(a) Clean and (b) Noisy datasets for Crossing arms on
chest (top), Touching face (center), and Putting arms on hip
(bottom) actions. The performance of the MODEC algorithm
[19] varies for different clothing and illumination conditions.
The Smartroom (Clean) dataset shows more accurate pose
estimation than the Smartroom (Noisy) dataset.

Fig. 5: Estimated body pose cues of our Smartroom Dataset
utilized for frame-level features. We estimate the four joint
angles at the shoulders (between torso and upper arms: �

L

,
�
R
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follows: we first find the mean m
i

and standard deviation st
i

of each feature dimension i in the training data and normalize
the training data (z-standardization) using the two statistics.
Then, during the inference, we use the same mean m

i

and
standard deviation st

i

of each feature dimension to normalize
the test segments in the Dynamic Programming steps.

For ground truth segment configurations, two human an-
notators labeled both (1) the start and end timing of peak
segment, and (2) the action label of the three pre-defined
actions. We add three frames prior-to and post-to each peak
boundary, and define non-overlapping onset, peak, offset, and
neutral segments. The onset and offset segments are always
chosen to be 7 frames in length.

We perform leave-one-video-out cross validation, and take
a subset (left-hand movements) of a video as a test sequence.
We train our model using the remaining videos. Figure

3 shows the segmentation result comparison between the
ground truth (top), our algorithm (center), and the algorithm
presented by Hoai et al. ( [9], “Hoai SVM+DP”) (bottom).
Both methods determine the start and end points, as well
as the label of each action event. Our method significantly
outperforms the method of Hoai et al. in terms of both frame
and event-level recognition rates.

Tables I and II show the comparisons between our algo-
rithm and the algorithm of Hoai et al. for the Smartroom
(clean) and Smartroom (noisy) datasets, respectively. For the
Smartroom (clean) dataset, our algorithm has a frame-level
precision of 83.84%, recall of 80.41%, and an F-measure of
81.95%. All of the frame-level recognition rates are higher
than the SVM-DP method of Hoai et al. by 27.65%, 19.91%,
23.79% (relative improvements) in terms of precision, recall,
and F-measure, respectively. Also, event-level precision, re-
call, and F-measure of our algorithm are 86.67% 89.63%
88.07%, respectively, 15.55%, 22.22%, and 19.75% higher
than the method of Hoai et al. Our algorithm also demon-
strates improvements in performance even when the pose
estimation was noisy. For the Smartroom (noisy) dataset,
our algorithm shows a frame-level precision of 44.41% ,
recall of 40.38%, and F-measure of 41.33%; relative im-
provement of 20.02%, 26.78%, and 24.07%, compared to
the method of Hoai et al. The event-level recognition rates
are also significantly improved when using our algorithm.
The event-level precision of our system is 25.36 %, recall
was 54.45%, and F-measure was 33.51%. These are 11.03%,
43.24%, and 21.76% relative improvement over the method
of Hoai et al [9]. This demonstrates that with a presence of
clear transitions between actions, our algorithm can robustly
segment and classify each salient action.

B. CMU-MAD Dataset
We test our method on the CMU-MAD dataset [10], which

contains 35 human actions of 20 subjects recorded using a
Microsoft Kinect sensor. Similar to the Smartroom Dataset,
we use the joint angles of elbows and shoulders as frame-
level features, and utilize the same segment-level features '
mapping as in the Smartroom Dataset, i.e. mean, standard
deviation, and linear regression slope. The start and end
time of each action are provided in this dataset. However,
the timings can not be directly used in our neutral-onset-
peak-offset-neutral model, since the action between the start
and end time contain all of the neutral, onset, peak, offset,
and neutral events. Due to the specific labeling scheme of
this dataset, it is reasonable to separate each labeled action
segment into three sub-sequences: [0-33.3%] for onset, [33.3-
66.6%] for peak, and [66.6-100%] for offset. We focus on
the evaluation of 9 actions that contain meaningful transitions
and exclude actions such as running (where the action peak
as well as onset/offset transitions are not clearly defined).
These selected 9 actions are: left/right arm waving, left/right
arm pointing to the ceiling, crossing arms on the chest,
basketball shooting, both arms pointing to both sides and
left/right side.

We perform 5-fold cross validation over the 20 subjects



Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 83.84 7.45 80.41 12.18 81.95 9.52 86.67 11.55 89.63 10.02 88.07 10.54
Hoai 56.19 5.32 60.50 7.98 58.15 5.74 71.11 7.70 67.41 12.24 68.32 3.86
Diff 27.65 19.91 23.79 15.55 22.22 19.75

TABLE I: Recognition rate (%) of Smartroom (Clean) Dataset using our proposed algorithm and the Hoai et al. [9] at
the frame and event level (see text). The last row (“Diff”) shows the relative improvement of using our algorithm over the
algorithm of Hoai et al.

Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 44.41 18.85 40.38 18.20 41.33 17.09 25.36 16.36 54.45 15.91 33.51 17.93
Hoai 24.39 11.54 13.60 6.88 17.26 8.33 14.33 14.93 11.20 6.81 11.75 10.56
Diff 20.02 26.78 24.07 11.03 43.24 21.76

TABLE II: Recognition rate (%) of Smartroom (Noisy) Dataset using our proposed algorithm and the Hoai et al. [9] at
the frame and event level (see text). The last row (“Diff”) shows the relative improvement of using our algorithm over the
algorithm of Hoai et al.

Frame-level Event-level

Prec Rec F-mea Prec Rec F-mea

Method Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ours 85.00 8.82 71.41 7.25 77.41 7.01 74.40 15.02 85.02 12.17 78.83 12.95
Hoai 73.79 9.62 70.57 9.96 71.87 8.70 73.45 15.84 83.88 13.06 77.85 14.23
Diff 11.21 0.84 5.54 0.95 1.14 0.98

TABLE III: Recognition rate (%) comparison on the CMU-MAD dataset using our proposed algorithm (“Ours”) and the
Hoai et al. (“Hoai”, [9]) at the frame and event level (see text). The last row (“Diff”) shows the relative improvement.

and measure the event-level performance as suggested in
[10]. Each fold contains videos of 4 subjects, each with 2
video sequences, in total 8 video sequences. We train our
model using segments of the four folds and test our model for
the held out. Due to the computational cost, we use DP over
sliding windows of 500 frames (about 25% length of a video
sequence) along the test time series as in [10], to solve for
the optimal segment configuration that maximizes the sum
of the SVM scores and the event transition probability.

Figure 6 shows the results of our algorithm (center) and
Hoai’s SVM+DP method (bottom), along with the ground
truth segmentation (top). Table III summarizes the results.
All of our frame-level recognition measures are higher than
the SVM-DP method of Hoai et al. [9]. For event-level ac-
curacy, our event-level precision (74.40%), recall (85.02%),
and F-measure (78.3%) are higher than the SVM-DP method,
by 0.95%, 1.14%, and 0.98%, respectively.

Our method improves the frame-level recognition rates
compared to the previous work of Hoai et al. [9], achiev-
ing 85.00% (precision), 71.41% (recall), and 77.41% (F-
measure), corresponding to relative improvement of 11.21%,
0.84%, and 5.54%, respectively. We achieve an event-level
precision of 74.40%, recall of 85.02%, and F-measure of
78.83%, and all of these are slightly higher than that of
Hoai et al. by 0.95%, 1.14%, and 0.98%, respectively. The
improvement in both frame and event-level recognition rates
using our algorithm over the previous method of Hoai et

al. [9] demonstrates that for actions of interest with distin-
guishable transition patterns, our algorithm can localize and
classify the action segments more effectively.

Regarding the difference between the Smartroom and
CMU-MAD dataset results in performance gain, we raise two
major points: (i) the transition segments were not explicitly
labeled for the CMU-MAD dataset, therefore the segments
were estimated during training. Since the major advantage
of our method is a better modeling of the transition states,
the improvement on CMU-MAD dataset is marginal. This
also explains a greater performance gain in the frame-
level compared to the event-level accuracy. In comparison,
our Smartroom dataset includes clearer labeling in event
transitions; hence the performance improves significantly due
to better transition modeling. (ii) The visual features for
the Smartroom dataset (i.e., pose estimation features from
RGB cameras without depth information) are more difficult
to estimate and thus are noisier than those of the CMU-
MAD dataset (i.e., 3D pose estimation features using Kinect
sensor). Therefore, a better transition model as a prior results
in a greater performance gain on the Smartroom dataset,
where the input features are noisier in nature.

V. CONCLUSIONS

In this work, we describe a new method combining
discriminative large margin classification with generative
modeling, where the explicit modeling of event transition
segments improves the state-of-art performance on the joint
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Fig. 6: An example result (subject 20, sequence 20) from the CMU-MAD evaluation. Ground truth (top), our method
(center), and SVM+DP presented by Hoai et al. [9] (bottom). Best viewed in color. The image is from the CMU-MAD
dataset [10].

localization and classification of video events. Our experi-
mental results on two benchmark datasets shows promising
recognition rates. An important future work we plan to
pursue is the consideration of event transition probability
with discriminative learning in finding an effective solution
to model the full relationships between events.

Nevertheless, there is still room for improvement in the
current work. In particular, though this work demonstrates
that the modeling of onset and offset of event transitions
can boost the localization and classification of video events,
while effective solution to properly model the full relation-
ships between pairwise events are yet to be explored. In
future work, we will study automatic methods that can learn
the transition probabilities of the full set of pairwise event
transitions.
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